Show simple item record

Semiparametric Bayesian Analysis of Case–Control Data under Conditional Gene-Environment Independence

dc.contributor.authorMukherjee, Bhramaren_US
dc.contributor.authorZhang, Lien_US
dc.contributor.authorGhosh, Malayen_US
dc.contributor.authorSinha, Samiranen_US
dc.date.accessioned2010-04-01T15:24:54Z
dc.date.available2010-04-01T15:24:54Z
dc.date.issued2007-09en_US
dc.identifier.citationMukherjee, Bhramar; Zhang, Li; Ghosh, Malay; Sinha, Samiran (2007). "Semiparametric Bayesian Analysis of Case–Control Data under Conditional Gene-Environment Independence." Biometrics 63(3): 834-844. <http://hdl.handle.net/2027.42/65893>en_US
dc.identifier.issn0006-341Xen_US
dc.identifier.issn1541-0420en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65893
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17489972&dopt=citationen_US
dc.description.abstractIn case–control studies of gene-environment association with disease, when genetic and environmental exposures can be assumed to be independent in the underlying population, one may exploit the independence in order to derive more efficient estimation techniques than the traditional logistic regression analysis ( Chatterjee and Carroll, 2005 , Biometrika 92, 399–418). However, covariates that stratify the population, such as age, ethnicity and alike, could potentially lead to nonindependence. In this article, we provide a novel semiparametric Bayesian approach to model stratification effects under the assumption of gene-environment independence in the control population. We illustrate the methods by applying them to data from a population-based case–control study on ovarian cancer conducted in Israel. A simulation study is conducted to compare our method with other popular choices. The results reflect that the semiparametric Bayesian model allows incorporation of key scientific evidence in the form of a prior and offers a flexible, robust alternative when standard parametric model assumptions do not hold.en_US
dc.format.extent203305 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights2007, The International Biometric Societyen_US
dc.subject.otherDirichlet Process Prioren_US
dc.subject.otherExponential Familyen_US
dc.subject.otherGene-environment Interactionen_US
dc.subject.otherLogistic Regressionen_US
dc.subject.otherOvarian Canceren_US
dc.subject.otherStratification Factorsen_US
dc.subject.otherZero Inflateden_US
dc.titleSemiparametric Bayesian Analysis of Case–Control Data under Conditional Gene-Environment Independenceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationotherDepartment of Statistics, Texas A&M University, TAMU 3143, College Station, Texas 77843, U.S.A.en_US
dc.identifier.pmid17489972en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65893/1/j.1541-0420.2007.00750.x.pdf
dc.identifier.doi10.1111/j.1541-0420.2007.00750.xen_US
dc.identifier.sourceBiometricsen_US
dc.identifier.citedreferenceAlbert, P. S., Ratnastingle, D., Tangrea, J., and Wacholder, S. ( 2001 ). Limitations of the case-only design for identifying gene-environment interaction. American Journal of Epidemiology 154, 687 – 693.en_US
dc.identifier.citedreferenceAntoniak, C. E. ( 1974 ). Mixtures of Dirichlet processes with applications to non-parametric problems. The Annals of Statistics 2, 1152 – 1174.en_US
dc.identifier.citedreferenceBreslow, N. E., Robins, J. M., and Wellner, J. A. ( 2000 ). On the semi-parametric efficiency of logistic regression under case-control sampling. Bernoulli 6, 447 – 455.en_US
dc.identifier.citedreferenceChatterjee, N. and Carroll, R. ( 2005 ). Semiparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies. Biometrika 92, 399 – 418.en_US
dc.identifier.citedreferenceClayton, D. and McKeigue, P. M. ( 2001 ). Epidemiological methods for studying genes and environmental factors in complex diseases. Lancet 358, 1356 – 1360.en_US
dc.identifier.citedreferenceCouch, F. J. DeShano, M. L., et al. ( 1997 ). BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. The New England Journal of Medicine 336, 1409 – 1415.en_US
dc.identifier.citedreferenceEscobar, M. D. and West, M. ( 1995 ). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 90, 577 – 588.en_US
dc.identifier.citedreferenceGatto, N. M., Campbell, U. B., Rundle, A. G., and Ahsan, H. ( 2004 ). Further development of the case-only design for assessing gene-environment interaction: Evaluation of and adjustment for bias. International Journal Epidemiology 33 ( 5 ), 1014 – 1024.en_US
dc.identifier.citedreferenceMacEachern, S. N. and MÜller, P. ( 1998 ). Estimating mixture of Dirichlet process models. Journal of Computational and Graphical Statistics 7, 223 – 238.en_US
dc.identifier.citedreferenceModan, M. D. Hartge, P., et al. ( 2001 ). Parity, oral contraceptives and the risk of ovarian cancer among carriers and noncarriers of a BRCA1 or BRCA2 mutation. The New England Journal of Medicine 345, 235 – 240.en_US
dc.identifier.citedreferenceParmigiani, G., Berry, D. A., and Aguilar, O. ( 1998 ). Determining carrier probabilities for breast cancer susceptibility genes BRCA1 and BRCA2. American Journal of Human Genetics 62, 145 – 158.en_US
dc.identifier.citedreferencePiegorsch, W. W., Weinberg, C. R., and Taylor, J. A. ( 1994 ). Non-hierarchical logistic models and case-only designs for assessing suspectibility in population based case-control studies. Statistics in Medicine 13, 153 – 162.en_US
dc.identifier.citedreferencePrentice, R. L. and Pyke, R. ( 1979 ). Logistic disease incidence models and case-control studies. Biometrika 13, 403 – 411.en_US
dc.identifier.citedreferenceRoeder, K., Carroll, R. J., and Lindsay, B. G. ( 1996 ). A nonparametric mixture approach to case-control studies with errors in variables. Journal of the American Statistical Association 91, 722 – 732.en_US
dc.identifier.citedreferenceSatten, G. and Kupper, L. ( 1993 ). Inference about exposure-disease associations using probability-of-exposure information. Journal of the American Statistical Association 88, 200 – 208.en_US
dc.identifier.citedreferenceSchmidt, S. and Schaid, D. J. ( 1999 ). Potential misinterpretation of the case-only study to assess gene-environment interaction. American Journal of Epidemiology 150, 878 – 885.en_US
dc.identifier.citedreferenceUmbach, D. M. and Weinberg, C. R. ( 1997 ). Designing and analyzing case-control studies to exploit independence of genotype and exposure. Statistics in Medicine 16, 1731 – 1743.en_US
dc.identifier.citedreferenceWest, M., MÜller, P., and Escobar, M. D. ( 1994 ). Hierarchical priors and mixture models, with application in regression and density estimation. In Aspects of Uncertainty. A Tribute to D. V. Lindley, A. F. M. Smith and P. Freeman ( eds ), 363 – 386. New York : Wiley.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.