Show simple item record

Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina

dc.contributor.authorKawamura, Hajimeen_US
dc.contributor.authorKobayashi, Masatoen_US
dc.contributor.authorLi, Qingen_US
dc.contributor.authorYamanishi, Shigekien_US
dc.contributor.authorKatsumura, Kozoen_US
dc.contributor.authorMinami, Masahiroen_US
dc.contributor.authorWu, David M.en_US
dc.contributor.authorPuro, Donald G.en_US
dc.date.accessioned2010-04-01T15:26:20Z
dc.date.available2010-04-01T15:26:20Z
dc.date.issued2004-12en_US
dc.identifier.citationKawamura, Hajime; Kobayashi, Masato; Li, Qing; Yamanishi, Shigeki; Katsumura, Kozo; Minami, Masahiro; Wu, David M.; Puro, Donald G. (2004). "Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina." The Journal of Physiology 561(3): 671-683. <http://hdl.handle.net/2027.42/65918>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65918
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15486015&dopt=citationen_US
dc.format.extent315217 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rightsThe Physiological society 2004en_US
dc.titleEffects of angiotensin II on the pericyte-containing microvasculature of the rat retinaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USAen_US
dc.contributor.affiliationotherDepartment of Ophthalmology & Visual Sciencesen_US
dc.contributor.affiliationotherNeuroscience Graduate Programen_US
dc.identifier.pmid15486015en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65918/1/jphysiol.2004.073098.pdf
dc.identifier.doi10.1113/jphysiol.2004.073098en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceBarry PH ( 1994 ). JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J Neurosci Meth 51, 107 – 116.en_US
dc.identifier.citedreferenceFernandes R, Girao H & Pereira P ( 2004 ). High glucose down regulates intercellular communication in retinal endothelial cells by enhancing degradation of connexin 43 by a proteasome-dependent mechanism. J Biol Chem 279, 27219 – 27224.en_US
dc.identifier.citedreferenceGrynkiewicz G, Poenie M & Tsien RY ( 1985 ). A new generation of Ca 2+ indicators with greatly improved fluorescence properties. J Biol Chem 260, 3440 – 3450.en_US
dc.identifier.citedreferenceHerbert JM, Augereau JM, Gleye J & Maffrand JP ( 1990 ). Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 172, 993 – 999.en_US
dc.identifier.citedreferenceKawamura H, Oku H, Li Q, Sakagami K & Puro DG ( 2002 ). Endothelin-induced changes in the physiology of retinal pericytes. Invest Ophthalmol Vis Sci 43, 882 – 888.en_US
dc.identifier.citedreferenceKawamura H, Sugiyama T, Wu DM, Kobayashi M, Yamanishi S, Katsumura K & Puro DG ( 2003 ). ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina. J Physiol 551, 787 – 799.en_US
dc.identifier.citedreferenceKohler K, Wheeler-Schilling T, Jurklies B, Guenther E & Zrenner E ( 1997 ). Angiotensin II in the rabbit retina. Vis Neurosci 14, 63 – 71.en_US
dc.identifier.citedreferenceKulkarni PS, Hamid H, Barati M & Butulija D ( 1999 ). Angiotensin II-induced constrictions are masked by bovine retinal vessels. Invest Ophthalmol Vis Sci 40, 721 – 728.en_US
dc.identifier.citedreferenceKuwabara T & Cogan D ( 1960 ). Studies of retinal vascular patterns. 1: normal architecture. Arch Ophthalmol 64, 904 – 911.en_US
dc.identifier.citedreferenceLampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG & Lau AF ( 2000 ). Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J Cell Biol 149, 1503 – 1512.en_US
dc.identifier.citedreferenceLi Q & Puro DG ( 2001 ). Adenosine activates ATP-sensitive K + currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors. Brain Res 907, 93 – 99.en_US
dc.identifier.citedreferenceLi AF, Sato T, Haimovici R, Okamoto T & Roy S ( 2003 ). High glucose alters connexin 43 expression and gap junction intercellular communication activity in retinal pericytes. Invest Ophthalmol Vis Sci 44, 5376 – 5382.en_US
dc.identifier.citedreferenceLindau M & Neher E ( 1988 ). Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Arch 411, 137 – 146.en_US
dc.identifier.citedreferenceMayer ML & Westbrook GL ( 1987 ). Permeation and block of N -methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394, 501 – 527.en_US
dc.identifier.citedreferenceMoreno AP, Saez JC, Fishman GI & Spray DC ( 1994 ). Human connexin43 gap junction channels. Regulation of unitary conductances by phosphorylation. Circ Res 74, 1050 – 1057.en_US
dc.identifier.citedreferenceMoriarty P, Dickson AJ, Erichsen JT & Boulton M ( 2000 ). Protein kinase C isoenzyme expression in retinal cells. Ophthalmic Res 32, 57 – 60.en_US
dc.identifier.citedreferenceNagahama T, Hayashi K, Ozawa Y, Takenaka T & Saruta T ( 2000 ). Role of protein kinase C in angiotensin II-induced constriction of renal microvessels. Kidney Int 57, 215 – 223.en_US
dc.identifier.citedreferenceOku H, Kodama T, Sakagami K & Puro DG ( 2001 ). Diabetes-induced disruption of gap junction pathways within the retinal microvasculature. Invest Ophthalmol Vis Sci 42, 1915 –.en_US
dc.identifier.citedreferencePallone TL & Huang JM ( 2002 ). Control of descending vasa recta pericyte membrane potential by angiotensin II. Am J Physiol Renal Physiol 282, F1064 – F1074.en_US
dc.identifier.citedreferenceRhinehart K, Zhang Z & Pallone TL ( 2002 ). Ca 2+ signaling and membrane potential in descending vasa recta pericytes and endothelia. Am J Physiol Renal Physiol 283, F852 – F860.en_US
dc.identifier.citedreferenceSakagami K, Kawamura H, Wu DM & Puro DG ( 2001 ). Nitric oxide/cGMP-induced inhibition of calcium and chloride currents in retinal pericytes. Microvasc Res 62, 196 – 203.en_US
dc.identifier.citedreferenceSakagami K, Wu DM & Puro DG ( 1999 ). Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules. J Physiol 521, 637 – 650.en_US
dc.identifier.citedreferenceSchonfelder U, Hofer A, Paul M & Funk RH ( 1998 ). In situ observation of living pericytes in rat retinal capillaries. Microvasc Res 56, 22 – 29.en_US
dc.identifier.citedreferenceShepro D & Morel NM ( 1993 ). Pericyte physiology. FASEB J 7, 1031 – 1038.en_US
dc.identifier.citedreferenceSuzuma I, Suzuma K, Ueki K, Hata Y, Feener EP, King GL & Aiello LP ( 2002 ). Stretch-induced retinal vascular endothelial growth factor expression is mediated by phosphatidylinositol 3-kinase and protein kinase C (PKC)-zeta but not by stretch-induced ERK1/2, Akt, Ras, or classical/novel PKC pathways. J Biol Chem 277, 1047 – 1057.en_US
dc.identifier.citedreferenceTilton RG ( 1991 ). Capillary pericytes: perspectives and future trends. J Electron Microsc Tech 19, 327 – 344.en_US
dc.identifier.citedreferenceWu DM, Kawamura H, Li Q & Puro DG ( 2001 ). Dopamine activates ATP-sensitive K + currents in rat retinal pericytes. Vis Neurosci 18, 935 – 940.en_US
dc.identifier.citedreferenceWu DM, Kawamura H, Sakagami K, Kobayashi M & Puro DG ( 2003 ). Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol Heart Circ Physiol 284, H2083 – H2090.en_US
dc.identifier.citedreferenceZhang Z, Rhinehart K, Lee-Kwon W, Weinman E & Pallone T ( 2004 ). AngII signaling in vasa recta pericytes by PKC and reactive oxygen species. Am J Physiol Heart Circ Physiol 287, H773 – H781.en_US
dc.identifier.citedreferenceZhang Z, Rhinehart K & Pallone TL ( 2002 ). Membrane potential controls calcium entry into descending vasa recta pericytes. Am J Physiol Regul Integr Comp Physiol 283, R949 – R957.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.