Show simple item record

Activation of the mTOR signalling pathway is required for pancreatic growth in protease-inhibitor-fed mice

dc.contributor.authorCrozier, Stephen J.en_US
dc.contributor.authorSans, Maria Dolorsen_US
dc.contributor.authorGuo, Li Lien_US
dc.contributor.authorD'Alecy, Louis G.en_US
dc.contributor.authorWilliams, John A.en_US
dc.date.accessioned2010-04-01T15:26:41Z
dc.date.available2010-04-01T15:26:41Z
dc.date.issued2006-06-15en_US
dc.identifier.citationCrozier, Stephen J.; Sans, M. Dolors; Guo, LiLi; D'Alecy, Louis G.; Williams, John A. (2006). "Activation of the mTOR signalling pathway is required for pancreatic growth in protease-inhibitor-fed mice." The Journal of Physiology 573(3): 775-786. <http://hdl.handle.net/2027.42/65924>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65924
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16613881&dopt=citationen_US
dc.format.extent440471 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2006 The Authors. Journal compilation © 2006 The Physiological Societyen_US
dc.titleActivation of the mTOR signalling pathway is required for pancreatic growth in protease-inhibitor-fed miceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USAen_US
dc.identifier.pmid16613881en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65924/1/jphysiol.2006.106914.pdf
dc.identifier.doi10.1113/jphysiol.2006.106914en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceAvruch J, Lin Y, Long X, Murthy S & Ortiz-Vega S ( 2005 ). Recent advances in the regulation of the TOR pathway by insulin and nutrients. Curr Opin Clin Nutr Metab Care 8, 67 – 72.en_US
dc.identifier.citedreferenceBi Y & Williams JA ( 2004 ). Receptor biology and signal transduction in pancreatic acinar cells. Curr Opin Gastroenterol 20, 427 – 434.en_US
dc.identifier.citedreferenceBragado MJ, Groblewski GE & Williams JA ( 1997 ). p70s6k is activated by CCK in rat pancreatic acini. Am J Physiol 273, C101 – C109.en_US
dc.identifier.citedreferenceBragado MJ, Groblewski GE & Williams JA ( 1998 ). Regulation of protein synthesis by cholecystokinin in rat pancreatic acini involves PHAS-I and the p70, S6 kinase pathway. Gastroenterology 115, 733 – 742.en_US
dc.identifier.citedreferenceChernick SS, Lepkovsky S & Chaikoff IL ( 1948 ). A dietary factor regulating the enzyme content of the pancreas: Changes induced in size and proteolytic activity of the chick pancreas by the ingestion of raw soy-bean meal. Am J Physiol 155, 33 – 41.en_US
dc.identifier.citedreferenceDembinski AB & Johnson LR ( 1980 ). Stimulation of pancreatic growth by secretin, caerulein, and pentagastrin. Endocrinology 106, 323 – 328.en_US
dc.identifier.citedreferenceDufner A & Thomas G ( 1999 ). Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res 253, 100 – 109.en_US
dc.identifier.citedreferenceGarlick PJ, McNurlan MA & Preedy VR ( 1980 ). A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [ 3 H]phenylalanine. Biochem J 192, 719 – 723.en_US
dc.identifier.citedreferenceGautsch TA, Anthony JC, Kimball SR, Paul GL, Layman DK & Jefferson LS ( 1998 ). Availability of eIF4E regulates skeletal muscle protein synthesis during recovery from exercise. Am J Physiol 274, C406 – C414.en_US
dc.identifier.citedreferenceGoke B, Printz H, Koop I, Rausch U, Richter G, Arnold R & Adler G ( 1986 ). Endogenous CCK release and pancreatic growth in rats after feeding a proteinase inhibitor (camostat). Pancreas 1, 509 – 515.en_US
dc.identifier.citedreferenceGraves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA & Lawrence JC Jr ( 1995 ). cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci U S A 92, 7222 – 7226.en_US
dc.identifier.citedreferenceGreen GM, Levan VH & Liddle RA ( 1986 ). Plasma cholecystokinin and pancreatic growth during adaptation to dietary protein. Am J Physiol 251, G70 – G74.en_US
dc.identifier.citedreferenceGroblewski GE, Yoshida M, Bragado MJ, Ernst SA, Leykam J & Williams JA ( 1998 ). Purification and characterization of a novel physiological substrate for calcineurin in mammalian cells. J Biol Chem 273, 22738 – 22744.en_US
dc.identifier.citedreferenceGuo LL, Sans MD, Gurda G, Lee SH & Williams JA ( 2004 ). Trypsin inhibitor-induced pancreatic growth involves induction of early response genes (abstract). Pancreas 29, 333.en_US
dc.identifier.citedreferenceHannan KM, Brandenburger Y, Jenkins A, Sharkey K, Cavanaugh A, Rothblum L, Moss T, Poortinga G, McArthur GA, Pearson RB & Hannan RD ( 2003 ). mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 23, 8862 – 8877.en_US
dc.identifier.citedreferenceHolz MK, Ballif BA, Gygi SP & Blenis J ( 2005 ). mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123, 569 – 580.en_US
dc.identifier.citedreferenceKhan MA & Goss DJ ( 2005 ). Translation initiation factor (eIF) 4B affects the rates of binding of the mRNA m7G cap analogue to wheat germ eIFiso4F and eIFiso4F. Biochem 44, 4510 – 4516.en_US
dc.identifier.citedreferenceKimball SR & Jefferson LS ( 2004 ). Regulation of global and specific mRNA translation by oral administration of branched-chain amino acids. Biochem Biophys Res Commun 313, 423 – 427.en_US
dc.identifier.citedreferenceKorc M, Bailey AC & Williams JA ( 1981 ). Regulation of protein synthesis in normal and diabetic rat pancreas by cholecystokinin. Am J Physiol 241, G116 – G121.en_US
dc.identifier.citedreferenceLiddle RA, Green GM, Conrad CK & Williams JA ( 1986 ). Proteins but not amino acids, carbohydrates, or fats stimulate cholecystokinin secretion in the rat. Am J Physiol 14, G243 – G248.en_US
dc.identifier.citedreferenceLogsdon CD ( 1986 ). Stimulation of pancreatic acinar cell growth by CCK, epidermal growth factor, and insulin in vitro. Am J Physiol 251, G487 – G494.en_US
dc.identifier.citedreferenceLogsdon CD ( 1999 ). Role of cholecystokinin in physiologic and pathophysiologic growth of the pancreas. In Gastrointestinal Endocrinology, ed.  Greeley GH, pp. 393 – 422. Humana Press, Totowa, NJ.en_US
dc.identifier.citedreferenceLundholm K, Ternell M, Zachrisson H, Moldawer L & Lindstrom L ( 1991 ). Measurement of hepatic protein synthesis in unrestrained mice-evaluation of the ‘flooding technique’. Acta Physiol Scand 141, 207 – 219.en_US
dc.identifier.citedreferenceMartin DE & Hall MN ( 2005 ). The expanding TOR signaling network. Curr Opin Cell Biol 17, 158 – 166.en_US
dc.identifier.citedreferenceMcGuinness EE, Morgan RG & Wormsley KG ( 1984 ). Effects of soybean flour on the pancreas of rats. Environ Health Perspect 56, 205 – 212.en_US
dc.identifier.citedreferenceMelmed RN & Bouchier IA ( 1968 ). Effects of trypsin inhibitors on the acinar cells of rat pancreas. Gut 9, 729.en_US
dc.identifier.citedreferenceMelmed RN, El-Aaser AA & Holt SJ ( 1976 ). Hypertrophy and hyperplasia of the neonatal rat exocrine pancreas induced by orally administered soybean trypsin inhibitor. Biochim Biophys Acta 421, 280 – 288.en_US
dc.identifier.citedreferenceMerrick WC ( 1992 ). Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev 56, 291 – 315.en_US
dc.identifier.citedreferenceMeyuhas O ( 2000 ). Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 267, 6321 – 6330.en_US
dc.identifier.citedreferenceMinet E, Michel G, Mottet D, Piret JP, Barbieux A, Raes M & Michiels C ( 2001 ). c-JUN gene induction and AP-1 activity is regulated by a JNK-dependent pathway in hypoxic HepG2 cells. Exp Cell Res 265, 114 – 124.en_US
dc.identifier.citedreferenceNader GA, McLoughlin TJ & Esser KA ( 2005 ). mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol 289, C1457 – C1465.en_US
dc.identifier.citedreferenceNiederau C, Liddle RA, Williams JA & Grendell JH ( 1987 ). Pancreatic growth: interaction of exogenous cholecystokinin, a protease inhibitor, and a cholecystokinin receptor antagonist in mice. Gut 28, 63 – 69.en_US
dc.identifier.citedreferenceOhnishi H, Ernst SA, Wys N, McNiven M & Williams JA ( 1996 ). Rab3D localizes to zymogen granules in rat pancreatic acini and other exocrine glands. Am J Physiol 271, G531 – G538.en_US
dc.identifier.citedreferencePearson KW, Scott D & Torrance B ( 1977 ). Effects of partial surgical pancreatectomy in rats. I. Pancreatic regeneration. Gastroenterology 72, 469 – 473.en_US
dc.identifier.citedreferenceRausch U, Rudiger K, Vasiloudes P, Kern H & Scheele G ( 1986 ). Lipase synthesis in the rat pancreas is regulated by secretin. Pancreas 1, 522 – 528.en_US
dc.identifier.citedreferenceSans MD, DiMagno MJ, D'Alecy LG & Williams JA ( 2003 ). Caerulein-induced acute pancreatitis inhibits protein synthesis through effects on eIF2B and eIF4F. Am J Physiol Gastrointest Liver Physiol 285, G517 – G528.en_US
dc.identifier.citedreferenceSans MD, Kimball SR & Williams JA ( 2002 ). Effect of CCK and intracellular calcium to regulate eIF2B and protein synthesis in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 282, G267 – G276.en_US
dc.identifier.citedreferenceSans MD, Lee SH, D'Alecy LG & Williams JA ( 2004 a ). Feeding activates protein synthesis in mouse pancreas at the translational level without increase in mRNA. Am J Physiol Gastrointest Liver Physiol 287, G667 – G675.en_US
dc.identifier.citedreferenceSans MD & Williams JA ( 2002 ). Translational control of protein synthesis in pancreatic acinar cells. Int J Gastrointest Cancer 31, 107 – 115.en_US
dc.identifier.citedreferenceSans MD & Williams JA ( 2004 ). Calcineurin is required for translational control of protein synthesis in rat pancreatic acini. Am J Physiol 287, C310 – C319.en_US
dc.identifier.citedreferenceSans MD, Xie Q & Williams JA ( 2004 b ). Regulation of translation elongation and phosphorylation of eEF2 in rat pancreatic acini. Biochem Biophys Res Commun 319, 144 – 151.en_US
dc.identifier.citedreferenceSato T, Niikawa J, Usui I, Imamura T, Yoshida H, Tanaka S & Mitamura K ( 2003 ). Pancreatic regeneration after ethionine-induced acute pancreatitis in rats lacking pancreatic CCK-A receptor gene expression. J Gastroenterol 38, 672 – 680.en_US
dc.identifier.citedreferenceSato N, Suzuki S, Kanai S, Ohta M, Jimi A, Noda T, Takiguchi S, Funakoshi A & Miyasaka K ( 2002 ). Different effects of oral administration of synthetic trypsin inhibitor on the pancreas between cholecystokinin-A receptor gene knockout mice and wild type mice. Jpn J Pharmacol 89, 290 – 295.en_US
dc.identifier.citedreferenceSchafer C, Steffen H, Krzykowski KJ, Goke B & Groblewski GE ( 2003 ). CRHSP-24 phosphorylation is regulated by multiple signaling pathways in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 285, G726 – G734.en_US
dc.identifier.citedreferenceScheele G ( 1993 ). Regulation of pancreatic gene expression in response to hormones and nutritional substrates. In The Pancreas: Biology, Pathobiology and Disease, ed.  Go VLW, DiMagno EP, Gardner JD, Lebenthal E & Reber HA & Scheele G, pp. 103 – 120. Raven Press, New York.en_US
dc.identifier.citedreferenceShah OJ, Anthony JC, Kimball SR & Jefferson LS ( 2000 ). 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab 279, E715 – E729.en_US
dc.identifier.citedreferenceSolomon TE, Petersen H, Elashoff J & Grossman MI ( 1978 ). Interaction of caerulein and secretin on pancreatic size and composition in rat. Am J Physiol 235, E714 – E719.en_US
dc.identifier.citedreferenceTashiro M, Dabrowski A, Guo LL, Sans MD & Williams JA ( 2006 ). Calcineurin-dependent and independent signal transduction pathways activated with pancreatic growth. Pancreas ( in press ).en_US
dc.identifier.citedreferenceTashiro M, Samuelson LC, Liddle RA & Williams JA ( 2004 ). Calcineurin mediates pancreatic growth in protease inhibitor-treated mice. Am J Physiol Gastrointest Liver Physiol 286, G784 – G790.en_US
dc.identifier.citedreferenceWatanabe S, Takeuchi T & Chey WY ( 1992 ). Mediation of trypsin inhibitor-induced pancreatic hypersecretion by secretin and cholecystokinin in rats. Gastroenterology 102, 621 – 628.en_US
dc.identifier.citedreferenceWilliams JA ( 2001 ). Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol 63, 77 – 97.en_US
dc.identifier.citedreferenceWisner JR Jr, McLaughlin RE, Rich KA, Ozawa S & Renner IG ( 1988 ). Effects of L-364,718, a new cholecystokinin receptor antagonist, on camostate-induced growth of the rat pancreas. Gastroenterology 94, 109 – 113.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.