Show simple item record

Modulation of Neuronal Signal Transduction Systems by Extracellular ATP

dc.contributor.authorEhrlich, Y. H.en_US
dc.contributor.authorSnider, R. Michaelen_US
dc.contributor.authorKornecki, E.en_US
dc.contributor.authorGarfield, M. G.en_US
dc.contributor.authorLenox, R. H.en_US
dc.date.accessioned2010-04-01T15:28:16Z
dc.date.available2010-04-01T15:28:16Z
dc.date.issued1988-01en_US
dc.identifier.citationEhrlich, Y. H.; Snider, R. M.; Kornecki, E.; Garfield, M. G.; Lenox, R. H. (1988). "Modulation of Neuronal Signal Transduction Systems by Extracellular ATP." Journal of Neurochemistry 50(1): 295-301. <http://hdl.handle.net/2027.42/65952>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65952
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2826688&dopt=citationen_US
dc.description.abstractThe secretion of ATP by stimulated nerves is well documented. Following repetitive stimulation, extracellular ATP at the synapse can accumulate to levels estimated to be well over 100 Μ M. The present study examined the effects of extracellular ATP in the concentration range of 0.1–1.0 m M on second-messenger-generating systems in cultured neural cells of the clones NG108-15 and NIE-115. Cells in a medium mimicking the physiological extracellular environment were used to measure 45 Ca 2+ uptake, changes in free intracellular Ca 2+ levels by the probes aequorin and Quin-2, de novo generation of cyclic GMP and cyclic AMP from intracellular GTP and ATP pools prelabeled with [ 3 H]guanosine and [ 3 H]adenine, respectively, and phosphoinositide metabolism in cells preloaded with [ 3 H]inositol and assayed in the presence of LiCI. Extracelluar ATP induced a concentration-dependent increase of 45 Ca 2+ uptake by intact cells, which was additive with the uptake induced by K + depolarization. The increased uptake involved elevation of intracellular free Ca 2+ ions, evidenced by measuring aequorin and Quin-2 signals. At the same concentration range (0.1–1.0 m M ), extracellular ATP induced an increase in [ 3 H]cyclic GMP formation, and a decrease in prostaglandin E 1 -stimulated [ 3 H]cyclic AMP generation. In addition, extracellular ATP (1 m M ) caused a large (15-fold) increase in [ 3 H]inositol phosphates accumulation, and this effect was blocked by including La 3+ ions in the assay medium. In parallel experiments, we found in NG 108–15 cells surface protein phosphorylation activity that had an apparent K m for extracellular ATP at the same concentration required to produce half-maximal effects on Ca 2+ uptake. Extracellular ATP at concentrations that can be produced in the synaptic cleft by repetitive stimulation but not during routine transmission can thus initiate a unique chain of events, which may play a role in the induction of long-term adaptive changes in neuronal function.en_US
dc.format.extent719879 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1988 International Society for Neurochemistryen_US
dc.subject.otherExtracellular ATPen_US
dc.subject.otherCalcium Uptakeen_US
dc.subject.otherCalcium Transientsen_US
dc.subject.otherAdenylate Cyclaseen_US
dc.subject.otherGuanylate Cyclaseen_US
dc.subject.otherPhosphoinositide Metabolismen_US
dc.subject.otherEcto-protein Kinaseen_US
dc.titleModulation of Neuronal Signal Transduction Systems by Extracellular ATPen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† The Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationother* The Neuroscience Research Unit, Department of Psychiatry, University of Vermont, Burlington, Vermont, U.S.A.en_US
dc.contributor.affiliationother† Department of Biochemistry, University of Vermont, Burlington, Vermont, U.S.A.en_US
dc.contributor.affiliationother§ Department of Pharmacology, University of Vermont, Burlington, Vermont, U.S.A.en_US
dc.identifier.pmid2826688en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65952/1/j.1471-4159.1988.tb13263.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1988.tb13263.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAlkon D. L. ( 1984 ) Calcium-mediated reduction of ionic currents: a biophysical memory trace. Science 226, 1037 – 1045.en_US
dc.identifier.citedreferenceAlkon D. L., Lederhendler I., and Shoukimas J. J. ( 1982 ) Primary changes of membrane currents during retention of associative learning. Science 215, 639 – 695.en_US
dc.identifier.citedreferenceArslan P., Di Virgilio F., Beltrame M., Tsien R. Y., and Pozzan T. ( 1985 ) Cytosolic Ca 2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca 2+. J. Biol. Chem. 260, 2719 – 2727.en_US
dc.identifier.citedreferenceBerridge M. J. ( 1981 ) Phosphatidylinositol hydrolysis: a multifunctional transducing mechanism. Mol. Cell. Endocrinol. 24, 115 – 140.en_US
dc.identifier.citedreferenceBurnstock G. ( 1972 ) Purinergic nerves. Pharmacol. Rev. 24, 509 – 581.en_US
dc.identifier.citedreferenceBurnstock G. ( 1975 ) Purinergic transmission, in Handbook of Psychopharmacology, Vol. 5 ( Iverson L. L, Iverson S. D, Snyder S. H, eds ), pp. 131 – 194. Plenum Press, New York.en_US
dc.identifier.citedreferenceBurnstock G. ( 1981 ) Neurotransmitters and trophic factors in the autonomic nervous system. J. Physiol. 313, 1 – 35.en_US
dc.identifier.citedreferenceCastel M., Gainer H., and Pellman H. D. ( 1984 ) Neuronal secretory systems. Int. Rev. Cytol. 88, 303 – 359.en_US
dc.identifier.citedreferenceDaly J. W, Kuroda Y, Phillis J. W, Shimizu H, Ui M, eds. ( 1983 ) Physiology and Pharmacology of Adenosine Derivatives. Raven Press, New York.en_US
dc.identifier.citedreferenceEhrlich Y. H. ( 1984 ) Protein phosphorylation: role in the function, regulation and adaptation of neural receptors, in Handbook of Neurochemistry. Vol. 6 ( Lajtha A, Ed ), pp. 541 – 574. Plenum Press, New York.en_US
dc.identifier.citedreferenceEhrlich Y. H., Davis T., Bock E., Kornecki E., and Lenox R. H. ( 1986a ) Ecto protein kinase activity on the external surface of intact neural cells. Nature 320, 67 – 69.en_US
dc.identifier.citedreferenceEhrlich Y. H., Garfield M. G., Davis T. B., Kornecki E., Chaffee J. E., and Lenox R. H. ( 1986b ) Extracellular protein phosphorylation systems in the regulation of neuronal function, in Progress in Brain Research, Vol. 69: Phosphoproteins in Neuronal Function. ( Gispen W. H. and Routtenberg A, eds ). pp. 197 – 208. Elsevier, Holland.en_US
dc.identifier.citedreferenceFisher S. K., Figueiredo J. C., and Bartus R. T. ( 1984 ) Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine. J. Neurochem. 43, 117l – 1179.en_US
dc.identifier.citedreferenceGordon J. L. ( 1986 ) Extracellular ATP effects, sources and fate. Biochem. J. 233, 309 – 319.en_US
dc.identifier.citedreferenceHamprecht B., Glaser T., Reiser G., Bayer E., and Propst F. ( 1985 ) Culture and characteristics of hormone-responsive neuroblastoma × glioma hybrid cells. Methods Enzymol. 109, 316 – 341.en_US
dc.identifier.citedreferenceHolton F. A. and Holton P. ( 1954 ) The capillary dilator substances in dry powders of spinal roots: a possible role of ATP in chemical transmission from nerve endings. J. Physiol. (Lond.) 126, 124 – 140.en_US
dc.identifier.citedreferenceHume R. I. and Honig M. G. ( 1986 ) Excitatory action of ATP on embryonic chick muscle. J. Neurosci. 6, 681 – 690.en_US
dc.identifier.citedreferenceJohnson P. C., Ware J. A., Cliveden P. B., Smith M., Dvorak A. M., and Salzman E. W. ( 1985 ) Measurement of ionized calcium in blood platelets with the photoprotein aequorin. Comparison with Quin 2. J. Biol. Chem. 260, 2069 – 2076.en_US
dc.identifier.citedreferenceKandel E. R. and Schwartz J. H. ( 1982 ) Molecular biology of learning: modulation of transmitter release. Science 218, 433 – 443.en_US
dc.identifier.citedreferenceKornecki E., Lenox R. H., Hardwick D. H., and Ehrlich Y. H. ( 1987 ) A role for platelet activating factor (PAF) in neuronal function: specific inhibition of platelet activation by triazolo-benzodiazepines and interactions of PAF with cultured neural cells, in New' Horizons in Platelet Activating Factor Research. ( Lee M. L. and Winslow C. M., eds ), pp. 285 – 292, John Wiley Sons, Chichester, England.en_US
dc.identifier.citedreferenceLenox R. H., Ellis J., van Riper D., and Ehrlich Y. H. ( 1985 ) Α 2 -Adrenergic receptor-mediated regulation of adenylate cyclase in the intact human platelet: Evidence for a receptor reserve. Mol. Pharmacol. 27, 1 – 7.en_US
dc.identifier.citedreferenceLynch G. and Baudry M. ( 1984 ) The biochemistry of memory: a new and specific hypothesis. Science 224, 1057 – 1063.en_US
dc.identifier.citedreferenceLynch G., Larson J., Kelso S., Barrionuevo G., and Schottler F. ( 1983 ) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719 – 721.en_US
dc.identifier.citedreferenceMastro A. M. and Rozengurt E. ( 1976 ) Endogenous protein kinase in outer plasma membrane of cultured 3T3 cells. J. Biol. Chem. 251, 7899 – 7906.en_US
dc.identifier.citedreferenceNestler E. D. and Greengard P. ( 1983 ) Protein phosphorylation in the brain. Nature 305, 583 – 588.en_US
dc.identifier.citedreferenceNirenberg M., Wilson S., Higashida H., Rotter A., Krueger K., Busis N., Ray R., Kenimer J. G., and Adler M. ( 1983 ) Modulation of synapse formation by cyclic adenosine monophosphate. Science 221, 331 – 338.en_US
dc.identifier.citedreferenceNishizuka Y. ( 1986 ) Studies and perspectives of protein kinase C. Science 233, 305 – 312.en_US
dc.identifier.citedreferenceRichardson P. J. and Brown S. J. ( 1987 ) ATP release from affinity-purified rat cholinergic nerve terminals. J. Neurochem. 48, 622 – 630.en_US
dc.identifier.citedreferenceRichelson E. ( 1979 ) The use of cultured cells in neurobiological studies, in International Review of Biochemistry, Physiological and Pharmacological Biochemistry, Vol. 26 ( Tipton K. F., ed ), pp. 81 – 120. University Park Press, Baltimore.en_US
dc.identifier.citedreferenceRouttenberg A. ( 1986 ) Synaptic plasticity and protein kinase C, in Progress in Brain Research, Vol. 69 ( Gispen W. H. and Routtenberg A, eds ), pp. 211 – 234. Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceSilinsky E. M. ( 1975 ) On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve endings. J. Physiol. 247, 145 – 162.en_US
dc.identifier.citedreferenceSilinsky E. M. ( 1984 ) On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J. Physiol. 346, 243 – 256.en_US
dc.identifier.citedreferenceSilinsky E. M. and Hubbard J. I. ( 1973 ) Release of ATP from rat motor nerve terminals. Nature 243, 404 – 405.en_US
dc.identifier.citedreferenceSilinsky E. M. and Ginsborg B. L. ( 1983 ) Inhibition of acetycholine release from preganglionic frog nerves by ATP but not adenosine. Nature 305, 327 – 328.en_US
dc.identifier.citedreferenceSnider R. M. and Richelson E. ( 1984 ) Bradykinin receptor-mediated cyclic GMP formation in a nerve cell population (murine neuroblastoma clone NIE-115). J. Neurochem. 43, 1749 – 1754.en_US
dc.identifier.citedreferenceSnider R. M., McKinney M., Forray C., and Richelson E. ( 1984 ) Neurotransmitter receptors mediate cyclic GMP formation by involvement of phopholipase A 2 and arachidonic acid metabolites. Proc. Nail. Acad. Sci. USA 81, 3905 – 3909.en_US
dc.identifier.citedreferenceStone T. W. ( 1981 ) Physiological roles for adenosine and ATP in the nervous system. Neuroscience 6, 523 – 555.en_US
dc.identifier.citedreferenceTeyler T. J. and Discenna P. ( 1984 ) Long-term potentiation as a candidate mnemonic device. Brain Res. Rev. 7, 15 – 28.en_US
dc.identifier.citedreferenceTsien R. Y., Pozzan T., and Rink T. J. ( 1982 ) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell Biol. 94, 325 – 334.en_US
dc.identifier.citedreferenceWhittemore S. R., Graber S. G., Lenox R. H., Hendley E. D., and Ehrlich Y. H. ( 1984 ) Activation of adenylate cyclase by preincubation of rat cerebral-cortical membranes under phosphorylating conditions: role of ATP. GTP, and divalent cations. J. Neurochem. 42, 1685 – 1696.en_US
dc.identifier.citedreferenceWilliams M. ( 1987 ) Purine receptors in mammalian tissues. Annu. Rev. Pharmacol. Toxicol. 27, 315 – 345.en_US
dc.identifier.citedreferenceWinkler H. ( 1976 ) The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience 1, 65 – 80.en_US
dc.identifier.citedreferenceZimmerman H. ( 1978 ) Turnover of adenine nucleotides in cholinergic synaptic vesicles of the Torpedo electric organ. Neuro science 3, 827 – 836.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.