Show simple item record

Phosphate Energy Metabolism During Domoic Acid-Induced Seizures

dc.contributor.authorSutherland, Garnette R.en_US
dc.contributor.authorRoss, Brian D.en_US
dc.contributor.authorLesiuk, Howarden_US
dc.contributor.authorPeeling, Jamesen_US
dc.contributor.authorPillay, Neelanen_US
dc.contributor.authorPinsky, Carlen_US
dc.date.accessioned2010-04-01T15:28:20Z
dc.date.available2010-04-01T15:28:20Z
dc.date.issued1993-11en_US
dc.identifier.citationSutherland, Garnette R.; Ross, Brian D.; Lesiuk, Howard; Peeling, James; Pillay, Neelan; Pinsky, Carl (1993). "Phosphate Energy Metabolism During Domoic Acid-Induced Seizures." Epilepsia 34(6): 996-1002. <http://hdl.handle.net/2027.42/65953>en_US
dc.identifier.issn0013-9580en_US
dc.identifier.issn1528-1167en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65953
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=8243372&dopt=citationen_US
dc.description.abstractThe effect of domoic acid-induced seizure activity on energy metabolism and on brain pH in mice was studied by continuous EEC recording and in vivo 31 P nuclear magnetic resonance (NMR) spectroscopy. Mice were divided into ventilated (n = 6) and nonventilated (n = 7) groups. Baseline EEG was 0.1-mV amplitude with frequence of >30-Hz and of 4–5 Hz. After intraperitoneal (i.p.) administration of domoic acid (6 mg/kg), electro graphic spikes appeared at increasing frequency, pro gressing to high-amplitude (0.1-0.8 mV) continuous sei zure activity (status epilepticus). In ventilated mice, the [ 31 P]NMR spectra showed that high-energy phosphate levels and tissue pH did not change after domoic acid administration or during the intervals of spiking or status epilepticus. Nonventilated mice showed periods of EEG suppression accompanied by decreases in the levels of high-energy phosphate metabolites and in pH, corresponding to episodic respiratory suppression during the spiking interval. In all animals, status epilepticus was fol lowed by a marked decrease in EEG amplitude that pro gressed rapidly to isoelectric silence. [ 31 P]NMR spectra obtained after this were indicative of total energy failure and tissue acidosis. In a separate group of ventilated mice (n = 4), domoic acid-induced status epilepticus was ac companied initially by an increase in mean arterial blood pressure (MAP) that slowly returned to baseline level. Isoelectric silence was accompanied by a decrease in MAP to 75 ± 8 mm Hg. These experiments suggest that domoic acid-induced seizures are not accompanied by an increase in substrate demand that exceeds supply.en_US
dc.format.extent909888 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1993 International League Against Epilepsyen_US
dc.subject.otherDomoic Aciden_US
dc.subject.other3I P Spectroscopyen_US
dc.subject.otherStatus Epilepen_US
dc.subject.otherTicusen_US
dc.subject.otherNeurologic Modelsen_US
dc.titlePhosphate Energy Metabolism During Domoic Acid-Induced Seizuresen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Radiology and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationother* Departments of Surgery (Neurosurgery), The University of Manitoba, Winnipeg Canadaen_US
dc.contributor.affiliationotherDepartments of Pharmacology and Therapeutics, The University of Manitoba, Winnipeg Canadaen_US
dc.contributor.affiliationotherDepartments of Radiology, The University of Manitoba, Winnipeg Canadaen_US
dc.contributor.affiliationotherDepartments of Medicine (Neurology), The University of Manitoba, Winnipeg Canadaen_US
dc.identifier.pmid8243372en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65953/1/j.1528-1157.1993.tb02124.x.pdf
dc.identifier.doi10.1111/j.1528-1157.1993.tb02124.xen_US
dc.identifier.sourceEpilepsiaen_US
dc.identifier.citedreferenceAstrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 1981 ; 12 : 723 – 5.en_US
dc.identifier.citedreferenceAuer RN, Siesjo BK. Biological differences between ischemia, hypoglycemia, and epilepsy. Ann Neural 1988 ; 24 : 699 – 707.en_US
dc.identifier.citedreferenceBolas NM, Rajagopalan B, Mitsumori F, Radda GK. Metabolic changes during experimental cerebral ischemia in hyperglycemic rats, observed by 31 P and 1 H magnetic resonance spectroscopy. Stroke 1988 ; 19 : 608 – 14.en_US
dc.identifier.citedreferenceBruni JE, Bose R, Pinsky C, Glavin G. Circumventricular organ origin of domoic acid-induced neuropathology and toxicology. Brain Res Bull 1991 ; 26 : 419 – 24.en_US
dc.identifier.citedreferenceCoyle JT. Neurotoxic action of kainic acid. J Neurochem 1983 ; 41 : 1 – 11.en_US
dc.identifier.citedreferenceCoyle JT, Murphy TH, Puttfarcken PS, Lyons EW, Vornov JJ. The nonexcitatory mechanisms of glutamate induced neurotoxicity. Epilepsy Res 1991 ; 10 : 41 – 8.en_US
dc.identifier.citedreferenceDakshinamurti K, Sharma SK, Sundaram M. Domoic acid induced seizure activity in rats. Neurosci Lett 1991 ; 27 : 193 – 7.en_US
dc.identifier.citedreferenceDebonnel G, Beauchesne L, DeMontigny C. Domoic acid, the alleged “mussel toxin,” might produce the neurotoxic effect through kainate receptor activation: an electrophysiological study in the rat dorsal hippocampus. Can J Physiol Pharmacol 1989 ; 67 : 29 – 33.en_US
dc.identifier.citedreferenceDuffy TE, Howse DC, Plum F. Cerebral energy metabolism during experimental status epilepticus. J Neurochem 1975 ; 24 : 925 – 34.en_US
dc.identifier.citedreferenceFarber JL. The role of calcium in cell death. Life Sci 1981 ; 29 : 1289 – 95.en_US
dc.identifier.citedreferenceFolbergrova J, Ingvar M, Nevander G, Siesjo BK. Cerebral metabolic changes during and following fluorothyl-induced seizures in ventilated rats. Neurochem 1985 ; 44 : 1419 – 26.en_US
dc.identifier.citedreferenceFolbergrova J, Ingvar M, Siesjo BK. Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline-induced seizures. J Neurochem 1981 ; 37 : 1228 – 38.en_US
dc.identifier.citedreferenceForster FM. The role of the brainstem in arterial hypertension subsequent to intracranial hypertension. Am J Physiol 1943 ; 139 : 347 – 50.en_US
dc.identifier.citedreferenceIngvar M, Soderfeldt B, Folbergrova J, Kalimo H, Olsson Y, Seisjo BK. Metabolic, circulatory, and structural alterations in the rat brain induced by sustained pentylenetetrazole sei zures, Epilepsia 1984 ; 25 : 191 – 204.en_US
dc.identifier.citedreferenceIverson F, Truelove J, Nera E, Tryphonas L, Campbell J, Lok E. Domoic acid poisoning and mussel-associated intoxica tion: preliminary investigations into the response of mice and rats to toxic mussel extract. Food Chem Toxicol 1989 ; 27 : 377 – 84.en_US
dc.identifier.citedreferenceKobayashi S, Kikuchi H, Ishikawa M, Hashimoto K. Regional changes of tissue pH and ATP content in rat brain following systemic administration of kainic acid. Brain Res 1990 ; 514 : 352 – 4.en_US
dc.identifier.citedreferenceLothman EW, Collins RC. Kainic acid induced limbic seizures: metabolic behavioral, electroencephalographic and neuro pathological correlates. Brain Res 1981 ; 218 : 299 – 318.en_US
dc.identifier.citedreferenceMacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Baker JL. NMDA-receptor activation increases cytoplasmic cal cium concentration in cultured spinal cord neurons. Nature 1986 ; 321 : 519 – 22.en_US
dc.identifier.citedreferenceMcCandless DW, DeFrance JF, Dworsky S, Presley-Zimmer E. Status epilepticus-induced changes in primate cortical energy metabolism. Am J Physiol 1986 ; 251 : C774 – 9.en_US
dc.identifier.citedreferenceMeldrum B. Excitotoxicity in ischemia: an overview. In : Ginsberg MD, Dietrich WD, eds. Cerebral vascular diseases. New York : Raven Press, 1989 ; 47 – 60.en_US
dc.identifier.citedreferenceMurphy SN, Miler RJ. Regulation of Ca + + influx into striatal neurons by kainic acid. J Pharmacol Exp Ther 1989 ; 249 : 184 – 93.en_US
dc.identifier.citedreferenceNovelli A, Reilly JA, Lysko PG, et al. Glutamate becomes neu rotoxic via the JV-methyl-D-aspartate receptor when intracel lular energy levels are reduced. Brain Res 1988 ; 451 : 205 – 12.en_US
dc.identifier.citedreferencePetroff OAC, Prichard JW, Behar KL, et al. In vivo phospho rous nuclear magnetic resonance spectroscopy in status epi lepticus. Ann Neural 1984 ; 16 : 169 – 77.en_US
dc.identifier.citedreferencePrichard JW, Shulman RG. NMR spectroscopy of brain metab olism in vivo. Annu Rev Neurosci 1986 ; 9 : 61 – 85.en_US
dc.identifier.citedreferencePetroff OAC, Prichard JW, Ogino T, Avison M, Alger JR, Shulman RG. Combined 1 H and 31 P nuclear magnetic resonance spectroscopic studies of bicuculline-induced seizures in vivo. Ann Neurol 1986 ; 20 : 185 – 93.en_US
dc.identifier.citedreferenceQuilliam MA, Wright JLC. The amnesic shellfish poisoning mys tery. Anal Chem 1989 ; 61 : 1053A – 9A.en_US
dc.identifier.citedreferenceRaichle ME. The pathophysiology of brain ischemia. Ann Neurol 1983 ; 13 : 2 – 10.en_US
dc.identifier.citedreferenceRetz KC, Coyle JT. Effects of kainic acid on high-energy me tabolites in the mouse striatum. J Neurochem 1982 ; 38 : 196 – 203.en_US
dc.identifier.citedreferenceRothman SM. The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci 1985 ; 5 : 1483 – 9.en_US
dc.identifier.citedreferenceSeisjo BK. Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1987 ; 1 : 155 – 86.en_US
dc.identifier.citedreferenceSeisjo BK, Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglyce mia, and spreading depression: a clarifying hypothesis. J Cereb Blood Flow Metab 1989 ; 9 : 127 – 40.en_US
dc.identifier.citedreferenceSlevin JT, Collins JF, Coyle JT : Analogue interactions with the brain receptor labeled by [ 3 H]kainic acid. Brain Res 1983 ; 265 : 169 – 72.en_US
dc.identifier.citedreferenceStewart OR, Zorumski CF, Price AT, Olney JW. Domoic acid: a dementia-inducing excitotoxic food poison with kainic acid receptor specificity. Exp Neurol 1990 ; 110 : 121 – 38.en_US
dc.identifier.citedreferenceStrain SM, Tasker RAR. Hippocampal damage produced by sys temic injections of domoic acid in mice. Neuroscience 1991 ; 44 : 343 – 52.en_US
dc.identifier.citedreferenceTasker RAR, Connell BJ, Strain SM. Pharmacology of systemically administered domoic acid in mice. Can J Physiol Phar macol 1991 ; 69 : 378 – 82.en_US
dc.identifier.citedreferenceTeitlebaum JS, Zatorre RJ, Carpenter S, et al. Neurologic se quelae of domoic acid intoxication due to ingestion of mus sels from Prince Edward Island. N Engl J Med 1990 ; 322 : 1781 – 7.en_US
dc.identifier.citedreferenceTryphonas L, Irson F. Neuropathology of excitatory neuro toxins: the domoic acid model. Toxicol Pathol 1990 ; 18 : 165 – 9.en_US
dc.identifier.citedreferenceYoung RSK, Cowan B, Briggs RW. Brain metabolism after electroshock seizure in the neonatal dog: a [ 31 P] NMR study. Brain Res Bull 1987 ; 18 : 261 – 3.en_US
dc.identifier.citedreferenceZaczek R, Coyle JT. Excitatory amino acid analogues: neuro toxicity and seizures. Neuropharmacology 1982 ; 21 : 15 – 26.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.