Show simple item record

Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor ΚB activation

dc.contributor.authorBrooks, Susan V.en_US
dc.contributor.authorVasilaki, Aphroditeen_US
dc.contributor.authorLarkin, Lisa M.en_US
dc.contributor.authorMcArdle, Anneen_US
dc.contributor.authorJackson, Malcolm J.en_US
dc.date.accessioned2010-04-01T15:29:47Z
dc.date.available2010-04-01T15:29:47Z
dc.date.issued2008-08-15en_US
dc.identifier.citationBrooks, Susan V.; Vasilaki, Aphrodite; Larkin, Lisa M.; McArdle, Anne; Jackson, Malcolm J. (2008). "Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor ΚB activation." The Journal of Physiology 586(16): 3979-3990. <http://hdl.handle.net/2027.42/65978>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65978
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18591188&dopt=citationen_US
dc.format.extent216115 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 The Physiological Societyen_US
dc.titleRepeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor ΚB activationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDivision of Metabolic and Cellular Medicine, School of Clinical Sciences, University of Liverpool, Liverpool, UKen_US
dc.identifier.pmid18591188en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65978/1/jphysiol.2008.155382.pdf
dc.identifier.doi10.1113/jphysiol.2008.155382en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceAlessio HM & Goldfarb AH ( 1988 ). Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. J Appl Physiol 64, 1333 – 1336.en_US
dc.identifier.citedreferenceAnderson ME ( 1996 ). Measurement of antioxidants: glutathione. In Free Radicals, a Practical Approach, ed. Punchard NA & Kelly FJ, pp. 213 – 226. IRL Press at Oxford University Press, Oxford, UK.en_US
dc.identifier.citedreferenceBaldwin KM, Klinkerfuss GH, Terjung RL, Mole PA & Holloszy JO ( 1972 ). Respiratory capacity of white, red, and intermediate muscle: adaptative response to exercise. Am J Physiol 222, 373 – 378.en_US
dc.identifier.citedreferenceBalon TW & Nadler JL ( 1994 ). Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol 77, 2519 – 2521.en_US
dc.identifier.citedreferenceBooth FW & Thomason DB ( 1991 ). Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev 71, 541 – 585.en_US
dc.identifier.citedreferenceBroome CS, Kayani AC, Palomero J, Dillmann WH, Mestril R, Jackson MJ & McArdle A ( 2006 ). Effect of lifelong overexpression of HSP70 in skeletal muscle on age-related oxidative stress and adaptation after nondamaging contractile activity. FASEB J 20, 1549 – 1551.en_US
dc.identifier.citedreferenceChow LS, Greenlund LJ, Asmann YW, Short KR, McCrady SK, Levine JA & Nair KS ( 2007 ). Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function. J Appl Physiol 102, 1078 – 1089.en_US
dc.identifier.citedreferenceClaiborne A ( 1985 ). Catalase activity. In CRC Handbook of Methods for Oxygen Radical Research, ed. Greenwald RA, pp. 283 – 284. CRC Press, Inc., Boca Raton, FL.en_US
dc.identifier.citedreferenceClanton TL, Zuo L & Klawitter P ( 1999 ). Oxidants and skeletal muscle function: physiologic and pathophysiologic implications. Proc Soc Exp Biol Med 222, 253 – 262.en_US
dc.identifier.citedreferenceCrapo JD, McCord JM & Fridovich I ( 1978 ). Preparation and assay of superoxide dismutases. Meth Enzym 53, 382 – 393.en_US
dc.identifier.citedreferenceDavies KJ, Packer L & Brooks GA ( 1981 ). Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Arch Biochem Biophys 209, 539 – 554.en_US
dc.identifier.citedreferenceDi Monte D, Bellomo G, Thor H, Nicotera P & Orrenius S ( 1984 ). Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca 2+ homeostasis. Arch Biochem Biophys 235, 343 – 350.en_US
dc.identifier.citedreferenceFitts RH, Booth FW, Winder WW & Holloszy JO ( 1975 ). Skeletal muscle respiratory capacity, endurance, and glycogen utilization. Am J Physiol 228, 1029 – 1033.en_US
dc.identifier.citedreferenceFlÜck M ( 2006 ). Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol 209, 2239 – 2248.en_US
dc.identifier.citedreferenceGomez-Cabrera MC, Domenech E & ViÑa J ( 2008 ). Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44, 126 – 131.en_US
dc.identifier.citedreferenceGore M, Fiebig R, Hollander J, Leeuwenburgh C, Ohno H & Ji LL ( 1998 ). Endurance training alters antioxidant enzyme gene expression in rat skeletal muscle. Can J Physiol Pharmacol 76, 1139 – 1145.en_US
dc.identifier.citedreferenceHashimoto T, Hussien R, Oommen S, Gohil K & Brooks GA ( 2007 ). Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J 21, 2602 – 2612.en_US
dc.identifier.citedreferenceHiguchi M, Cartier LJ, Chen M & Holloszy JO ( 1985 ). Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. J Gerontol 40, 281 – 286.en_US
dc.identifier.citedreferenceHollander J, Fiebig R, Gore M, Bejma J, Ookawara T, Ohno H & Ji LL ( 1999 ). Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptation to endurance training. Am J Physiol Regul Integr Comp Physiol 277, R856 – R862.en_US
dc.identifier.citedreferenceHolloszy JO ( 1967 ). Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242, 2278 – 2282.en_US
dc.identifier.citedreferenceHolloszy JO & Coyle EF ( 1984 ). Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56, 831 – 838.en_US
dc.identifier.citedreferenceHood DA, Irrcher I, Ljubicic V & Joseph AM ( 2006 ). Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209, 2265 – 2275.en_US
dc.identifier.citedreferenceJackson MJ, Papa S, Bolanos J, Bruckdorfer R, Carlsen H, Elliott RM et al. ( 2002 ). Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Mol Aspects Med 23, 209 – 285.en_US
dc.identifier.citedreferenceJenkins RR ( 1988 ). Free radical chemistry. Relationship to exercise. Sports Med 5, 156 – 170.en_US
dc.identifier.citedreferenceJi LL ( 1996 ). Exercise, oxidative stress, and antioxidants. Am J Sports Med 24, S20 – S24.en_US
dc.identifier.citedreferenceJi LL, Fu R & Mitchell EW ( 1992 ). Glutathione and antioxidant enzymes in skeletal muscle: effects of fiber type and exercise intensity. J Appl Physiol 73, 1854 – 1859.en_US
dc.identifier.citedreferenceJi LL, Gomez-Cabrera M-C, Steinhafel N & Vina J ( 2004 ). Acute exercise activates nuclear factor (NF)-kB signaling pathway in rat skeletal muscle. FASEB J 18, 1499 – 1506.en_US
dc.identifier.citedreferenceKhassaf M, McArdle A, Esanu C, Vasilaki A, McArdle F, Griffiths RD, Brodie DA & Jackson MJ ( 2003 ). Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol 549, 645 – 652.en_US
dc.identifier.citedreferenceLarkin LM, Faulkner JA, Hinkle RT, Hassett CA, Supiano MA & Halter JB ( 1997 ). Functional deficits in medial gastrocnemius grafts in rats: relation to muscle metabolism and beta-AR regulation. J Appl Physiol 83, 67 – 73.en_US
dc.identifier.citedreferenceLaughlin MH, Simpson T, Sexton WL, Brown OR, Smith JK & Korthuis RJ ( 1990 ). Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J Appl Physiol 68, 2337 – 2343.en_US
dc.identifier.citedreferenceLeeuwenburgh C, Fiebig R, Chandwaney R & Ji LL ( 1994 ). Aging and exercise training in skeletal muscle: Responses of glutathione and antioxidant enzyme systems. Am J Physiol Regul Integr Comp Physiol 267, R439 – R445.en_US
dc.identifier.citedreferenceLeeuwenburgh C, Hollander J, Leichtweis S, Griffiths M, Gore M & Ji LL ( 1997 ). Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am J Physiol Regul Integr Comp Physiol 272, R363 – R369.en_US
dc.identifier.citedreferenceLeeuwenburgh C & Ji LL ( 1996 ). Alteration of glutathione and antioxidant status with exercise in unfed and refed rats. J Nutr 126, 1833 – 1843.en_US
dc.identifier.citedreferenceLei B, Adachi N & Arai T ( 1997 ). The effect of hypothermia on H 2 O 2 production during ischemia and reperfusion: a microdialysis study in the gerbil hippocampus. Neurosci Lett 222, 91 – 94.en_US
dc.identifier.citedreferenceLiu J, Yeo HC, Overvik-Douki E, Hagen T, Doniger SJ, Chu DW, Brooks GA & Ames BN ( 2000 ). Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol 89, 21 – 28.en_US
dc.identifier.citedreferenceMcArdle A, Pattwell D, Vasilaki A, Griffiths RD & Jackson MJ ( 2001 ). Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol 280, C621 – C627.en_US
dc.identifier.citedreferenceMcArdle F, Spiers S, Aldemir H, Vasilaki A, Beaver A, Iwanejko L, McArdle A & Jackson MJ ( 2004 ). Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice. J Physiol 561, 233 – 244.en_US
dc.identifier.citedreferenceMarin E, Kretzschmar M, Arokoski J, Hanninen O & Klinger W ( 1993 ). Enzymes of glutathione synthesis in dog skeletal muscles and their response to training. Acta Physiol Scand 147, 369 – 373.en_US
dc.identifier.citedreferenceMassett MP & Berk BC ( 2005 ). Strain-dependent differences in responses to exercise training in inbred and hybrid mice. Am J Physiol Regul Integr Comp Physiol 288, R1006 – R1013.en_US
dc.identifier.citedreferenceMazzeo RS, Brooks GA & Horvath SM ( 1984 ). Effects of age on metabolic responses to endurance training in rats. J Appl Physiol 57, 1369 – 1374.en_US
dc.identifier.citedreferenceMiles AM, Chen Y, Owens MW & Grisham MB ( 1995 ). Fluorimetric determination of nitric oxide. Methods 7, 40 – 47.en_US
dc.identifier.citedreferenceNavarro A, Gomez C, Lopez-Cepero JM & Boveris A ( 2004 ). Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 286, R505 – R511.en_US
dc.identifier.citedreferenceOh-ishi S, Kizaki T, Nagasawa J, Izawa T, Komabayashi T, Nagata N, Suzuki K, Taniguchi N & Ohno H ( 1997 ). Effects of endurance training on superoxide dismutase activity, content and mRNA expression in rat muscle. Clin Exp Pharmacol Physiol 24, 326 – 332.en_US
dc.identifier.citedreferenceO'Neill CA, Stebbins CL, Bonigut S, Halliwell B & Longhurst JC ( 1996 ). Production of hydroxyl radicals in contracting skeletal muscle of cats. J Appl Physiol 81, 1197 – 1206.en_US
dc.identifier.citedreferencePagala MK, Ravindran K, Namba T & Grob D ( 1998 ). Skeletal muscle fatigue and physical endurance of young and old mice. Muscle Nerve 21, 1729 – 1739.en_US
dc.identifier.citedreferencePahl HL ( 1999 ). Activators and target genes of Rel/NF-ΚB transcription factors. Oncogene 18, 6853 – 6866.en_US
dc.identifier.citedreferencePowers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb RA & Dudley G ( 1994 ). Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 266, R375 – R380.en_US
dc.identifier.citedreferencePowers SK, Ji LL & Leeuwenburgh C ( 1999 ). Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 31, 987 – 997.en_US
dc.identifier.citedreferenceRhee SG ( 2006 ). Cell signaling. H 2 O 2, a necessary evil for cell signaling. Science 312, 1882 – 1883.en_US
dc.identifier.citedreferenceSastre J, Asensi M, Gasco E, Pallardo FV, Ferrero JA, Furukawa T & Vina J ( 1992 ). Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration. Am J Physiol Regul Integr Comp Physiol 263, R992 – R995.en_US
dc.identifier.citedreferenceSen CK, Marin E, Kretzschmar M & Hanninen O ( 1992 ). Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J Appl Physiol 73, 1265 – 1272.en_US
dc.identifier.citedreferenceSrere PA ( 1969 ). Citrate synthase. In Methods in Enzymology, ed. Lowenstein JM, pp. 3 – 5. Academic Press, New York, NY.en_US
dc.identifier.citedreferenceTonkonogi M, Walsh B, Svensson M & Sahlin MS ( 2000 ). Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress. J Physiol 528, 379 – 388.en_US
dc.identifier.citedreferenceVasilaki A, Mansouri A, Van Remmen H, Van Der Meulen JH, Larkin L, Richardson AG, McArdle A, Faulkner JA & Jackson MJ ( 2006 a ). Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell 5, 109 – 117.en_US
dc.identifier.citedreferenceVasilaki A, McArdle F, Iwanejko LM & McArdle A ( 2006 b ). Adaptive responses of mouse skeletal muscle to contractile activity: the effect of age. Mech Ageing Dev 127, 830 – 839.en_US
dc.identifier.citedreferenceZhou LZ, Johnson AP & Rando TA ( 2001 ). NFkB and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells. Free Radic Biol Med 31, 1405 – 1416.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.