Show simple item record

Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell

dc.contributor.authorBeaudoin, Deborah Langrillen_US
dc.contributor.authorManookin, Michael B.en_US
dc.contributor.authorDemb, Jonathan B.en_US
dc.date.accessioned2010-04-01T15:30:28Z
dc.date.available2010-04-01T15:30:28Z
dc.date.issued2008-11-15en_US
dc.identifier.citationBeaudoin, Deborah Langrill; Manookin, Michael B.; Demb, Jonathan B. (2008). "Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell." The Journal of Physiology 586(22): 5487-5502. <http://hdl.handle.net/2027.42/65990>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65990
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18832424&dopt=citationen_US
dc.format.extent465056 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 The Physiological Societyen_US
dc.titleDistinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cellen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumNeuroscience Program, University of Michigan, Ann Arbor, MI 48105, USAen_US
dc.contributor.affiliationotherDepartments of Ophthalmology & Visual Sciences and Molecular, Cellular & Developmental Biologyen_US
dc.identifier.pmid18832424en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65990/1/jphysiol.2008.156224.pdf
dc.identifier.doi10.1113/jphysiol.2008.156224en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceBaccus SA & Meister M ( 2002 ). Fast and slow contrast adaptation in retinal circuitry. Neuron 36, 909 – 919.en_US
dc.identifier.citedreferenceBeaudoin DL, Borghuis BG & Demb JB ( 2007 ). Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells. J Neurosci 27, 2636 – 2645.en_US
dc.identifier.citedreferenceBelgum JH, Dvorak DR & McReynolds JS ( 1984 ). Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells. J Physiol 354, 273 – 286.en_US
dc.identifier.citedreferenceBenardete EA & Kaplan E ( 1999 ). The dynamics of primate M retinal ganglion cells. Vis Neurosci 16, 355 – 368.en_US
dc.identifier.citedreferenceBloomfield SA & Dacheux RF ( 2001 ). Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 20, 351 – 384.en_US
dc.identifier.citedreferenceBonin V, Mante V & Carandini M ( 2006 ). The statistical computation underlying contrast gain control. J Neurosci 26, 6346 – 6353.en_US
dc.identifier.citedreferenceBrenner N, Bialek W & de Ruyter van Steveninck R ( 2000 ). Adaptive rescaling maximizes information transmission. Neuron 26, 695 – 702.en_US
dc.identifier.citedreferenceCarandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, Olshausen BA, Gallant JL & Rust NC ( 2005 ). Do we know what the early visual system does? J Neurosci 25, 10577 – 10597.en_US
dc.identifier.citedreferenceChander D & Chichilnisky EJ ( 2001 ). Adaptation to temporal contrast in primate and salamander retina. J Neurosci 21, 9904 – 9916.en_US
dc.identifier.citedreferenceChichilnisky EJ ( 2001 ). A simple white noise analysis of neuronal light responses. Network 12, 199 – 213.en_US
dc.identifier.citedreferenceCohen ED ( 1998 ). Interactions of inhibition and excitation in the light-evoked currents of X type retinal ganglion cells. J Neurophysiol 80, 2975 – 2990.en_US
dc.identifier.citedreferenceCohen ED & Miller RF ( 1999 ). The network-selective actions of quinoxalines on the neurocircuitry operations of the rabbit retina. Brain Res 831, 206 – 228.en_US
dc.identifier.citedreferenceDeans MR, Volgyi B, Goodenough DA, Bloomfield SA & Paul DL ( 2002 ). Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36, 703 – 712.en_US
dc.identifier.citedreferenceDemb JB ( 2008 ). Functional circuitry of visual adaptation in the retina. J Physiol 586, 4377 – 4384.en_US
dc.identifier.citedreferenceDemb JB, Haarsma L, Freed MA & Sterling P ( 1999 ). Functional circuitry of the retinal ganglion cell's nonlinear receptive field. J Neurosci 19, 9756 – 9767.en_US
dc.identifier.citedreferenceDemb JB, Zaghloul K & Sterling P ( 2001 ). Cellular basis for the response to second-order motion cues in Y retinal ganglion cells. Neuron 32, 711 – 721.en_US
dc.identifier.citedreferenceDeVries SH ( 2000 ). Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28, 847 – 856.en_US
dc.identifier.citedreferenceDeVries SH & Baylor DA ( 1995 ). An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. Proc Natl Acad Sci U S A 92, 10658 – 10662.en_US
dc.identifier.citedreferenceDumitrescu ON, Protti DA, Majumdar S, Zeilhofer HU & Wassle H ( 2006 ). Ionotropic glutamate receptors of amacrine cells of the mouse retina. Vis Neurosci 23, 79 – 90.en_US
dc.identifier.citedreferenceDunn FA, Doan T, Sampath AP & Rieke F ( 2006 ). Controlling the gain of rod-mediated signals in the mammalian retina. J Neurosci 26, 3959 – 3970.en_US
dc.identifier.citedreferenceDunn FA, Lankheet MJ & Rieke F ( 2007 ). Light adaptation in cone vision involves switching between receptor and post-receptor sites. Nature 449, 603 – 606.en_US
dc.identifier.citedreferenceDunn FA & Rieke F ( 2008 ). Single-photon absorptions evoke synaptic depression in the retina to extend the operational range of rod vision. Neuron 57, 894 – 904.en_US
dc.identifier.citedreferenceGaudry KS & Reinagel P ( 2007 a ). Benefits of contrast normalization demonstrated in neurons and model cells. J Neurosci 27, 8071 – 8079.en_US
dc.identifier.citedreferenceGaudry KS & Reinagel P ( 2007 b ). Contrast adaptation in a nonadapting LGN model. J Neurophysiol 98, 1287 – 1296.en_US
dc.identifier.citedreferenceHochstein S & Shapley RM ( 1976 ). Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J Physiol 262, 265 – 284.en_US
dc.identifier.citedreferenceJakobs TC, Koizumi A & Masland RH ( 2008 ). The spatial distribution of glutamatergic inputs to dendrites of retinal ganglion cells. J Comp Neurol 510, 221 – 236.en_US
dc.identifier.citedreferenceJohnston D & Wu S ( 1994 ). Foundations of Cellular Neurophysiology. The MIT Press, Cambridge, MA, USA.en_US
dc.identifier.citedreferenceKerschensteiner D, Liu H, Cheng CW, Demas J, Cheng SH, Hui CC, Chow RL & Wong RO ( 2008 ). Genetic control of circuit function: Vsx1 and Irx5 transcription factors regulate contrast adaptation in the mouse retina. J Neurosci 28, 2342 – 2352.en_US
dc.identifier.citedreferenceKier CK, Buchsbaum G & Sterling P ( 1995 ). How retinal microcircuits scale for ganglion cells of different size. J Neurosci 15, 7673 – 7683.en_US
dc.identifier.citedreferenceKim KJ & Rieke F ( 2001 ). Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. J Neurosci 21, 287 – 299.en_US
dc.identifier.citedreferenceKim KJ & Rieke F ( 2003 ). Slow Na + inactivation and variance adaptation in salamander retinal ganglion cells. J Neurosci 23, 1506 – 1516.en_US
dc.identifier.citedreferenceKohn A ( 2007 ). Visual adaptation: physiology, mechanisms, and functional benefits. J Neurophysiol 97, 3155 – 3164.en_US
dc.identifier.citedreferenceKolb H & Nelson R ( 1993 ). OFF-alpha and OFF-beta ganglion cells in cat retina. II. Neural circuitry as revealed by electron microscopy of HRP stains. J Comp Neurol 329, 85 – 110.en_US
dc.identifier.citedreferenceLesica NA, Jin J, Weng C, Yeh CI, Butts DA, Stanley GB & Alonso JM ( 2007 ). Adaptation to stimulus contrast and correlations during natural visual stimulation. Neuron 55, 479 – 491.en_US
dc.identifier.citedreferenceManookin MB, Beaudoin DL, Ernst ZR, Flagel LJ & Demb JB ( 2008 ). Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J Neurosci 28, 4136 – 4150.en_US
dc.identifier.citedreferenceManookin MB & Demb JB ( 2006 ). Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron 50, 453 – 464.en_US
dc.identifier.citedreferenceMante V, Bonin V & Carandini M ( 2008 ). Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron 58, 625 – 638.en_US
dc.identifier.citedreferenceMante V, Frazor RA, Bonin V, Geisler WS & Carandini M ( 2005 ). Independence of luminance and contrast in natural scenes and in the early visual system. Nat Neurosci 8, 1690 – 1697.en_US
dc.identifier.citedreferenceMargolis DJ & Detwiler PB ( 2007 ). Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells. J Neurosci 27, 5994 – 6005.en_US
dc.identifier.citedreferenceMuller F, Wassle H & Voigt T ( 1988 ). Pharmacological modulation of the rod pathway in the cat retina. J Neurophysiol 59, 1657 – 1672.en_US
dc.identifier.citedreferenceMurphy GJ & Rieke F ( 2006 ). Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron 52, 511 – 524.en_US
dc.identifier.citedreferenceNakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N & Nakanishi S ( 1993 ). Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 268, 11868 – 11873.en_US
dc.identifier.citedreferenceO'Brien BJ, Isayama T, Richardson R & Berson DM ( 2002 ). Intrinsic physiological properties of cat retinal ganglion cells. J Physiol 538, 787 – 802.en_US
dc.identifier.citedreferenceOtt RL ( 1993 ). An Introduction to Statistical Methods and Data Analysis. Duxbury Press, Belmont, CA, USA.en_US
dc.identifier.citedreferencePaternain AV, Morales M & Lerma J ( 1995 ). Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185 – 189.en_US
dc.identifier.citedreferencePeichl L & Gonzalez-Soriano J ( 1994 ). Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 11, 501 – 517.en_US
dc.identifier.citedreferencePillow JW, Paninski L, Uzzell VJ, Simoncelli EP & Chichilnisky EJ ( 2005 ). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J Neurosci 25, 11003 – 11013.en_US
dc.identifier.citedreferenceProtti DA, Flores-Herr N, Li W, Massey SC & Wassle H ( 2005 ). Light signaling in scotopic conditions in the rabbit, mouse and rat retina: a physiological and anatomical study. J Neurophysiol 93, 3479 – 3488.en_US
dc.identifier.citedreferenceRieke F ( 2001 ). Temporal contrast adaptation in salamander bipolar cells. J Neurosci 21, 9445 – 9454.en_US
dc.identifier.citedreferenceRohlich P, van Veen T & Szel A ( 1994 ). Two different visual pigments in one retinal cone cell. Neuron 13, 1159 – 1166.en_US
dc.identifier.citedreferenceRoska B, Molnar A & Werblin FS ( 2006 ). Parallel processing in retinal ganglion cells: how integration of space-time patterns of excitation and inhibition form the spiking output. J Neurophysiol 95, 3810 – 3822.en_US
dc.identifier.citedreferenceRotolo TC & Dacheux RF ( 2003 ). Evidence for glycine, GABA A, and GABA B receptors on rabbit OFF-alpha ganglion cells. Vis Neurosci 20, 285 – 296.en_US
dc.identifier.citedreferenceSampath AP & Rieke F ( 2004 ). Selective transmission of single photon responses by saturation at the rod-to-rod bipolar synapse. Neuron 41, 431 – 443.en_US
dc.identifier.citedreferenceShapley RM & Victor JD ( 1978 ). The effect of contrast on the transfer properties of cat retinal ganglion cells. J Physiol 285, 275 – 298.en_US
dc.identifier.citedreferenceSlaughter MM & Miller RF ( 1981 ). 2-Amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211, 182 – 185.en_US
dc.identifier.citedreferenceSmirnakis SM, Berry MJ, Warland DK, Bialek W & Meister M ( 1997 ). Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69 – 73.en_US
dc.identifier.citedreferenceSoucy E, Wang Y, Nirenberg S, Nathans J & Meister M ( 1998 ). A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 21, 481 – 493.en_US
dc.identifier.citedreferenceTsukamoto Y, Morigiwa K, Ueda M & Sterling P ( 2001 ). Microcircuits for night vision in mouse retina. J Neurosci 21, 8616 – 8623.en_US
dc.identifier.citedreferenceVictor JD ( 1987 ). The dynamics of the cat retinal X cell centre. J Physiol 386, 219 – 246.en_US
dc.identifier.citedreferenceVolgyi B, Deans MR, Paul DL & Bloomfield SA ( 2004 ). Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24, 11182 – 11192.en_US
dc.identifier.citedreferenceWark B, Lundstrom BN & Fairhall A ( 2007 ). Sensory adaptation. Curr Opin Neurobiol 17, 423 – 429.en_US
dc.identifier.citedreferenceXu Y, Vasudeva V, Vardi N, Sterling P & Freed MA ( 2008 ). Different types of ganglion cell share a synaptic pattern. J Comp Neurol 507, 1871 – 1878.en_US
dc.identifier.citedreferenceYang JH, Maple B, Gao F, Maguire G & Wu SM ( 1998 ). Postsynaptic responses of horizontal cells in the tiger salamander retina are mediated by AMPA-preferring receptors. Brain Res 797, 125 – 134.en_US
dc.identifier.citedreferenceYin L, Smith RG, Sterling P & Brainard DH ( 2006 ). Chromatic properties of horizontal and ganglion cell responses follow a dual gradient in cone opsin expression. J Neurosci 26, 12351 – 12361.en_US
dc.identifier.citedreferenceYu Y & Lee TS ( 2003 ). Dynamical mechanisms underlying contrast gain control in single neurons. Phys Rev E Stat Nonlin Soft Matter Phys 68, 011901.en_US
dc.identifier.citedreferenceZaghloul KA, Boahen K & Demb JB ( 2003 ). Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. J Neurosci 23, 2645 – 2654.en_US
dc.identifier.citedreferenceZaghloul KA, Boahen K & Demb JB ( 2005 ). Contrast adaptation in subthreshold and spiking responses of mammalian Y-type retinal ganglion cells. J Neurosci 25, 860 – 868.en_US
dc.identifier.citedreferenceZhang J, Li W, Hoshi H, Mills SL & Massey SC ( 2005 ). Stratification of alpha ganglion cells and ON/OFF directionally selective ganglion cells in the rabbit retina. Vis Neurosci 22, 535 – 549.en_US
dc.identifier.citedreferenceZhou ZJ & Fain GL ( 1995 ). Neurotransmitter receptors of starburst amacrine cells in rabbit retinal slices. J Neurosci 15, 5334 – 5345.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.