Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell
dc.contributor.author | Beaudoin, Deborah Langrill | en_US |
dc.contributor.author | Manookin, Michael B. | en_US |
dc.contributor.author | Demb, Jonathan B. | en_US |
dc.date.accessioned | 2010-04-01T15:30:28Z | |
dc.date.available | 2010-04-01T15:30:28Z | |
dc.date.issued | 2008-11-15 | en_US |
dc.identifier.citation | Beaudoin, Deborah Langrill; Manookin, Michael B.; Demb, Jonathan B. (2008). "Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell." The Journal of Physiology 586(22): 5487-5502. <http://hdl.handle.net/2027.42/65990> | en_US |
dc.identifier.issn | 0022-3751 | en_US |
dc.identifier.issn | 1469-7793 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/65990 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18832424&dopt=citation | en_US |
dc.format.extent | 465056 bytes | |
dc.format.extent | 3110 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.rights | Journal compilation © 2008 The Physiological Society | en_US |
dc.title | Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Physiology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Neuroscience Program, University of Michigan, Ann Arbor, MI 48105, USA | en_US |
dc.contributor.affiliationother | Departments of Ophthalmology & Visual Sciences and Molecular, Cellular & Developmental Biology | en_US |
dc.identifier.pmid | 18832424 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/65990/1/jphysiol.2008.156224.pdf | |
dc.identifier.doi | 10.1113/jphysiol.2008.156224 | en_US |
dc.identifier.source | The Journal of Physiology | en_US |
dc.identifier.citedreference | Baccus SA & Meister M ( 2002 ). Fast and slow contrast adaptation in retinal circuitry. Neuron 36, 909 – 919. | en_US |
dc.identifier.citedreference | Beaudoin DL, Borghuis BG & Demb JB ( 2007 ). Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells. J Neurosci 27, 2636 – 2645. | en_US |
dc.identifier.citedreference | Belgum JH, Dvorak DR & McReynolds JS ( 1984 ). Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells. J Physiol 354, 273 – 286. | en_US |
dc.identifier.citedreference | Benardete EA & Kaplan E ( 1999 ). The dynamics of primate M retinal ganglion cells. Vis Neurosci 16, 355 – 368. | en_US |
dc.identifier.citedreference | Bloomfield SA & Dacheux RF ( 2001 ). Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 20, 351 – 384. | en_US |
dc.identifier.citedreference | Bonin V, Mante V & Carandini M ( 2006 ). The statistical computation underlying contrast gain control. J Neurosci 26, 6346 – 6353. | en_US |
dc.identifier.citedreference | Brenner N, Bialek W & de Ruyter van Steveninck R ( 2000 ). Adaptive rescaling maximizes information transmission. Neuron 26, 695 – 702. | en_US |
dc.identifier.citedreference | Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, Olshausen BA, Gallant JL & Rust NC ( 2005 ). Do we know what the early visual system does? J Neurosci 25, 10577 – 10597. | en_US |
dc.identifier.citedreference | Chander D & Chichilnisky EJ ( 2001 ). Adaptation to temporal contrast in primate and salamander retina. J Neurosci 21, 9904 – 9916. | en_US |
dc.identifier.citedreference | Chichilnisky EJ ( 2001 ). A simple white noise analysis of neuronal light responses. Network 12, 199 – 213. | en_US |
dc.identifier.citedreference | Cohen ED ( 1998 ). Interactions of inhibition and excitation in the light-evoked currents of X type retinal ganglion cells. J Neurophysiol 80, 2975 – 2990. | en_US |
dc.identifier.citedreference | Cohen ED & Miller RF ( 1999 ). The network-selective actions of quinoxalines on the neurocircuitry operations of the rabbit retina. Brain Res 831, 206 – 228. | en_US |
dc.identifier.citedreference | Deans MR, Volgyi B, Goodenough DA, Bloomfield SA & Paul DL ( 2002 ). Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36, 703 – 712. | en_US |
dc.identifier.citedreference | Demb JB ( 2008 ). Functional circuitry of visual adaptation in the retina. J Physiol 586, 4377 – 4384. | en_US |
dc.identifier.citedreference | Demb JB, Haarsma L, Freed MA & Sterling P ( 1999 ). Functional circuitry of the retinal ganglion cell's nonlinear receptive field. J Neurosci 19, 9756 – 9767. | en_US |
dc.identifier.citedreference | Demb JB, Zaghloul K & Sterling P ( 2001 ). Cellular basis for the response to second-order motion cues in Y retinal ganglion cells. Neuron 32, 711 – 721. | en_US |
dc.identifier.citedreference | DeVries SH ( 2000 ). Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28, 847 – 856. | en_US |
dc.identifier.citedreference | DeVries SH & Baylor DA ( 1995 ). An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. Proc Natl Acad Sci U S A 92, 10658 – 10662. | en_US |
dc.identifier.citedreference | Dumitrescu ON, Protti DA, Majumdar S, Zeilhofer HU & Wassle H ( 2006 ). Ionotropic glutamate receptors of amacrine cells of the mouse retina. Vis Neurosci 23, 79 – 90. | en_US |
dc.identifier.citedreference | Dunn FA, Doan T, Sampath AP & Rieke F ( 2006 ). Controlling the gain of rod-mediated signals in the mammalian retina. J Neurosci 26, 3959 – 3970. | en_US |
dc.identifier.citedreference | Dunn FA, Lankheet MJ & Rieke F ( 2007 ). Light adaptation in cone vision involves switching between receptor and post-receptor sites. Nature 449, 603 – 606. | en_US |
dc.identifier.citedreference | Dunn FA & Rieke F ( 2008 ). Single-photon absorptions evoke synaptic depression in the retina to extend the operational range of rod vision. Neuron 57, 894 – 904. | en_US |
dc.identifier.citedreference | Gaudry KS & Reinagel P ( 2007 a ). Benefits of contrast normalization demonstrated in neurons and model cells. J Neurosci 27, 8071 – 8079. | en_US |
dc.identifier.citedreference | Gaudry KS & Reinagel P ( 2007 b ). Contrast adaptation in a nonadapting LGN model. J Neurophysiol 98, 1287 – 1296. | en_US |
dc.identifier.citedreference | Hochstein S & Shapley RM ( 1976 ). Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J Physiol 262, 265 – 284. | en_US |
dc.identifier.citedreference | Jakobs TC, Koizumi A & Masland RH ( 2008 ). The spatial distribution of glutamatergic inputs to dendrites of retinal ganglion cells. J Comp Neurol 510, 221 – 236. | en_US |
dc.identifier.citedreference | Johnston D & Wu S ( 1994 ). Foundations of Cellular Neurophysiology. The MIT Press, Cambridge, MA, USA. | en_US |
dc.identifier.citedreference | Kerschensteiner D, Liu H, Cheng CW, Demas J, Cheng SH, Hui CC, Chow RL & Wong RO ( 2008 ). Genetic control of circuit function: Vsx1 and Irx5 transcription factors regulate contrast adaptation in the mouse retina. J Neurosci 28, 2342 – 2352. | en_US |
dc.identifier.citedreference | Kier CK, Buchsbaum G & Sterling P ( 1995 ). How retinal microcircuits scale for ganglion cells of different size. J Neurosci 15, 7673 – 7683. | en_US |
dc.identifier.citedreference | Kim KJ & Rieke F ( 2001 ). Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. J Neurosci 21, 287 – 299. | en_US |
dc.identifier.citedreference | Kim KJ & Rieke F ( 2003 ). Slow Na + inactivation and variance adaptation in salamander retinal ganglion cells. J Neurosci 23, 1506 – 1516. | en_US |
dc.identifier.citedreference | Kohn A ( 2007 ). Visual adaptation: physiology, mechanisms, and functional benefits. J Neurophysiol 97, 3155 – 3164. | en_US |
dc.identifier.citedreference | Kolb H & Nelson R ( 1993 ). OFF-alpha and OFF-beta ganglion cells in cat retina. II. Neural circuitry as revealed by electron microscopy of HRP stains. J Comp Neurol 329, 85 – 110. | en_US |
dc.identifier.citedreference | Lesica NA, Jin J, Weng C, Yeh CI, Butts DA, Stanley GB & Alonso JM ( 2007 ). Adaptation to stimulus contrast and correlations during natural visual stimulation. Neuron 55, 479 – 491. | en_US |
dc.identifier.citedreference | Manookin MB, Beaudoin DL, Ernst ZR, Flagel LJ & Demb JB ( 2008 ). Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J Neurosci 28, 4136 – 4150. | en_US |
dc.identifier.citedreference | Manookin MB & Demb JB ( 2006 ). Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron 50, 453 – 464. | en_US |
dc.identifier.citedreference | Mante V, Bonin V & Carandini M ( 2008 ). Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron 58, 625 – 638. | en_US |
dc.identifier.citedreference | Mante V, Frazor RA, Bonin V, Geisler WS & Carandini M ( 2005 ). Independence of luminance and contrast in natural scenes and in the early visual system. Nat Neurosci 8, 1690 – 1697. | en_US |
dc.identifier.citedreference | Margolis DJ & Detwiler PB ( 2007 ). Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells. J Neurosci 27, 5994 – 6005. | en_US |
dc.identifier.citedreference | Muller F, Wassle H & Voigt T ( 1988 ). Pharmacological modulation of the rod pathway in the cat retina. J Neurophysiol 59, 1657 – 1672. | en_US |
dc.identifier.citedreference | Murphy GJ & Rieke F ( 2006 ). Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron 52, 511 – 524. | en_US |
dc.identifier.citedreference | Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N & Nakanishi S ( 1993 ). Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 268, 11868 – 11873. | en_US |
dc.identifier.citedreference | O'Brien BJ, Isayama T, Richardson R & Berson DM ( 2002 ). Intrinsic physiological properties of cat retinal ganglion cells. J Physiol 538, 787 – 802. | en_US |
dc.identifier.citedreference | Ott RL ( 1993 ). An Introduction to Statistical Methods and Data Analysis. Duxbury Press, Belmont, CA, USA. | en_US |
dc.identifier.citedreference | Paternain AV, Morales M & Lerma J ( 1995 ). Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185 – 189. | en_US |
dc.identifier.citedreference | Peichl L & Gonzalez-Soriano J ( 1994 ). Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 11, 501 – 517. | en_US |
dc.identifier.citedreference | Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP & Chichilnisky EJ ( 2005 ). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J Neurosci 25, 11003 – 11013. | en_US |
dc.identifier.citedreference | Protti DA, Flores-Herr N, Li W, Massey SC & Wassle H ( 2005 ). Light signaling in scotopic conditions in the rabbit, mouse and rat retina: a physiological and anatomical study. J Neurophysiol 93, 3479 – 3488. | en_US |
dc.identifier.citedreference | Rieke F ( 2001 ). Temporal contrast adaptation in salamander bipolar cells. J Neurosci 21, 9445 – 9454. | en_US |
dc.identifier.citedreference | Rohlich P, van Veen T & Szel A ( 1994 ). Two different visual pigments in one retinal cone cell. Neuron 13, 1159 – 1166. | en_US |
dc.identifier.citedreference | Roska B, Molnar A & Werblin FS ( 2006 ). Parallel processing in retinal ganglion cells: how integration of space-time patterns of excitation and inhibition form the spiking output. J Neurophysiol 95, 3810 – 3822. | en_US |
dc.identifier.citedreference | Rotolo TC & Dacheux RF ( 2003 ). Evidence for glycine, GABA A, and GABA B receptors on rabbit OFF-alpha ganglion cells. Vis Neurosci 20, 285 – 296. | en_US |
dc.identifier.citedreference | Sampath AP & Rieke F ( 2004 ). Selective transmission of single photon responses by saturation at the rod-to-rod bipolar synapse. Neuron 41, 431 – 443. | en_US |
dc.identifier.citedreference | Shapley RM & Victor JD ( 1978 ). The effect of contrast on the transfer properties of cat retinal ganglion cells. J Physiol 285, 275 – 298. | en_US |
dc.identifier.citedreference | Slaughter MM & Miller RF ( 1981 ). 2-Amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211, 182 – 185. | en_US |
dc.identifier.citedreference | Smirnakis SM, Berry MJ, Warland DK, Bialek W & Meister M ( 1997 ). Adaptation of retinal processing to image contrast and spatial scale. Nature 386, 69 – 73. | en_US |
dc.identifier.citedreference | Soucy E, Wang Y, Nirenberg S, Nathans J & Meister M ( 1998 ). A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 21, 481 – 493. | en_US |
dc.identifier.citedreference | Tsukamoto Y, Morigiwa K, Ueda M & Sterling P ( 2001 ). Microcircuits for night vision in mouse retina. J Neurosci 21, 8616 – 8623. | en_US |
dc.identifier.citedreference | Victor JD ( 1987 ). The dynamics of the cat retinal X cell centre. J Physiol 386, 219 – 246. | en_US |
dc.identifier.citedreference | Volgyi B, Deans MR, Paul DL & Bloomfield SA ( 2004 ). Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24, 11182 – 11192. | en_US |
dc.identifier.citedreference | Wark B, Lundstrom BN & Fairhall A ( 2007 ). Sensory adaptation. Curr Opin Neurobiol 17, 423 – 429. | en_US |
dc.identifier.citedreference | Xu Y, Vasudeva V, Vardi N, Sterling P & Freed MA ( 2008 ). Different types of ganglion cell share a synaptic pattern. J Comp Neurol 507, 1871 – 1878. | en_US |
dc.identifier.citedreference | Yang JH, Maple B, Gao F, Maguire G & Wu SM ( 1998 ). Postsynaptic responses of horizontal cells in the tiger salamander retina are mediated by AMPA-preferring receptors. Brain Res 797, 125 – 134. | en_US |
dc.identifier.citedreference | Yin L, Smith RG, Sterling P & Brainard DH ( 2006 ). Chromatic properties of horizontal and ganglion cell responses follow a dual gradient in cone opsin expression. J Neurosci 26, 12351 – 12361. | en_US |
dc.identifier.citedreference | Yu Y & Lee TS ( 2003 ). Dynamical mechanisms underlying contrast gain control in single neurons. Phys Rev E Stat Nonlin Soft Matter Phys 68, 011901. | en_US |
dc.identifier.citedreference | Zaghloul KA, Boahen K & Demb JB ( 2003 ). Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. J Neurosci 23, 2645 – 2654. | en_US |
dc.identifier.citedreference | Zaghloul KA, Boahen K & Demb JB ( 2005 ). Contrast adaptation in subthreshold and spiking responses of mammalian Y-type retinal ganglion cells. J Neurosci 25, 860 – 868. | en_US |
dc.identifier.citedreference | Zhang J, Li W, Hoshi H, Mills SL & Massey SC ( 2005 ). Stratification of alpha ganglion cells and ON/OFF directionally selective ganglion cells in the rabbit retina. Vis Neurosci 22, 535 – 549. | en_US |
dc.identifier.citedreference | Zhou ZJ & Fain GL ( 1995 ). Neurotransmitter receptors of starburst amacrine cells in rabbit retinal slices. J Neurosci 15, 5334 – 5345. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.