Show simple item record

Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings

dc.contributor.authorFrost, Christopher J.en_US
dc.contributor.authorHunter, Mark D.en_US
dc.date.accessioned2010-04-01T15:30:38Z
dc.date.available2010-04-01T15:30:38Z
dc.date.issued2008-06en_US
dc.identifier.citationFrost, Christopher J.; Hunter, Mark D. (2008). "Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings." New Phytologist 178(4): 835-845. <http://hdl.handle.net/2027.42/65993>en_US
dc.identifier.issn0028-646Xen_US
dc.identifier.issn1469-8137en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/65993
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18346100&dopt=citationen_US
dc.format.extent283319 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 New Phytologist Trusten_US
dc.subject.otherCarbon Allocationen_US
dc.subject.otherHerbivoryen_US
dc.subject.otherNitrogen Allocationen_US
dc.subject.otherOrgyia Leucostigma (White Marked Tussock Moth)en_US
dc.subject.otherQuercus Rubra (Red Oak)en_US
dc.subject.otherRhizodepositionen_US
dc.subject.otherStable Isotopesen_US
dc.titleHerbivore-induced shifts in carbon and nitrogen allocation in red oak seedlingsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology & School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherInstitute of Ecology, University of Georgia, Athens, GA 30602-2202, USA;en_US
dc.contributor.affiliationotherCenter for Chemical Ecology and Schatz Center for Tree Molecular Genetics, Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA;en_US
dc.identifier.pmid18346100en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/65993/1/j.1469-8137.2008.02420.x.pdf
dc.identifier.doi10.1111/j.1469-8137.2008.02420.xen_US
dc.identifier.sourceNew Phytologisten_US
dc.identifier.citedreferenceArnold T, Schultz J. 2002. Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia 130 : 585 – 593.en_US
dc.identifier.citedreferenceAyres E, Heath J, Possell M, Black HIJ, Kerstiens G, Bardgett RD. 2004. Tree physiological responses to above-ground herbivory directly modify below-ground processes of soil carbon and nitrogen cycling. Ecology Letters 7 : 469 – 479.en_US
dc.identifier.citedreferenceBabst BA, Ferrieri RA, Gray DW, Lerdau M, Schlyer DJ, Schueller M, Thorpe MR, Orians CM. 2005. Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytologist 167 : 63 – 72.en_US
dc.identifier.citedreferenceBardgett RD, Wardle DA. 2003. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84 : 2258 – 2268.en_US
dc.identifier.citedreferenceBassman JH, Dickmann DI. 1985. Effects of defoliation in the developing leaf zone on young Populus × euramericana plants 2. Distribution of photosynthate C-14 after defoliation. Forest Science 31 : 358 – 366.en_US
dc.identifier.citedreferenceBezemer TM, van Dam NM. 2005. Linking aboveground and belowground interactions via induced plant defenses. Trends in Ecology & Evolution 20 : 617 – 624.en_US
dc.identifier.citedreferenceBringhurst RM, Cardon ZG, Gage DJ. 2001. Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proceedings of the National Academy of Sciences, USA 98 : 4540 – 4545.en_US
dc.identifier.citedreferenceCardon ZG, Czaja AD, Funk JL, Vitt PL. 2002. Periodic carbon flushing to roots of Quercus rubra saplings affects soil respiration and rhizosphere microbial biomass. Oecologia 133 : 215 – 223.en_US
dc.identifier.citedreferenceChaar H, Colin F, Leborgne G. 1997. Artificial defoliation, decapitation of the terminal bud, and removal of the apical tip of the shoot in sessile oak seedlings and consequences on subsequent growth. Canadian Journal of Forest Research 27 : 1614 – 1621.en_US
dc.identifier.citedreferenceChapin FS. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11 : 233 – 260.en_US
dc.identifier.citedreferenceCheng W. 1996. Measurement of rhizospheric respiration and organic matter decomposition using natural 13 C. Plant and Soil 183 : 263 – 268.en_US
dc.identifier.citedreferenceCheng WX, Coleman DC. 1990. Effect of living roots on soil organic matter decomposition. Soil Biology & Biochemistry 22 : 781 – 787.en_US
dc.identifier.citedreferenceCook BD, Allan DL. 1992. Dissolved organic carbon in old field soils: total amounts as a measure of available resources for soil mineralization. Soil Biology & Biochemistry 24 : 585 – 594.en_US
dc.identifier.citedreferenceDavis JM, Gordon MP, Smit BA. 1991. Assimilate movement dictates remote sites of wound-induced gene expression in poplar leaves. Proceedings of the National Academy of Sciences, USA 88 : 2393 – 2396.en_US
dc.identifier.citedreferenceDawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP. 2002. Stable isotopes in plant ecology. Annual Review of Ecology and Systematics 33 : 507 – 559.en_US
dc.identifier.citedreferenceDickie IA, Koide RT, Fayish AC. 2001. Vesicular–arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytologist 151 : 257 – 264.en_US
dc.identifier.citedreferenceFarmer EE, Ryan CA. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences, USA 87 : 7713 – 7716.en_US
dc.identifier.citedreferenceFrank DA, Groffman PM. 1998. Ungulate versus landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology 79 : 2229 – 2241.en_US
dc.identifier.citedreferenceFrank DA, McNaughton SJ. 1993. Evidence for the promotion of aboveground grassland production by native large herbivores in Yellowstone National Park. Oecologia 96 : 157 – 161.en_US
dc.identifier.citedreferenceFrost CJ, Hunter MD. 2004. Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms. Ecology 85 : 3335 – 3347.en_US
dc.identifier.citedreferenceFrost CJ, Hunter MD. 2007. Recycling of nitrogen in herbivore feces: plant recovery, herbivore assimilation, soil retention, and leaching losses. Oecologia 151 : 42 – 53.en_US
dc.identifier.citedreferenceFrost CJ, Hunter MD. 2008. Insect herbivores and their frass affect Quercus rubra leaf quality and initial stages of subsequent litter decomposition. Oikos 117 : 13 – 22.en_US
dc.identifier.citedreferenceGiardina CP, Coleman MD, Binkley D, Hancock JE, King JS, Lilleskov EA, Loya WM, Pregitzer KS, Ryan MG, Trettin CC. 2005. The response of belowground carbon allocation in forests to global change. In : Binkley D, Menyailo O, eds. Tree species effects on soils: implications for global change. Dordrecht, the Netherlands : Kluwer Academic Publishers, 119 – 154.en_US
dc.identifier.citedreferenceHamilton EWI, Frank DA. 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82 : 2397 – 2404.en_US
dc.identifier.citedreferenceHolland JN. 1995. Effects of above-ground herbivory on soil microbial biomass in conventional and no-tillage agroecosystems. Appied Soil Ecology 2 : 275 – 279.en_US
dc.identifier.citedreferenceHolland JN, Cheng W, Crossley DA. 1996. Herbivore-induced changes in plant carbon allocation: assessment of below-ground C fluxes using carbon-14. Oecologia 107 : 87 – 94.en_US
dc.identifier.citedreferenceHunter MD. 1987. Opposing effects of spring defoliation on late season caterpillars. Ecological Entomology 12 : 373 – 382.en_US
dc.identifier.citedreferenceHunter MD. 2001. Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agricultural and Forest Entomology 3 : 77 – 84.en_US
dc.identifier.citedreferenceHunter MD, Schultz JC. 1995. Fertilization mitigates chemical induction and herbivore responses within damaged oak trees. Ecology 76 : 1226 – 1232.en_US
dc.identifier.citedreferenceJaeger CH III, Lindow SE, Miller W, Clark E, Firestone MK. 1999. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Applied and Environmental Microbiology 65 : 2685 – 2690.en_US
dc.identifier.citedreferenceJardine TD, Cunjak RA. 2005. Analytical error in stable isotope ecology. Oecologia 144 : 528 – 533.en_US
dc.identifier.citedreferenceJenkinson DS, Fox RH, Rayner JH. 1985. Interactions between fertilizer nitrogen and soil nitrogen – the so-called priming effect. Journal of Soil Science 36 : 425 – 444.en_US
dc.identifier.citedreferenceJones DL, Healey JR, Willett VB, Farrar JF, Hodge A. 2005. Dissolved organic nitrogen uptake by plants-an important N uptake pathway? Soil Biology & Biochemistry 37 : 413 – 423.en_US
dc.identifier.citedreferenceJones DL, Hodge A, Kuzyakov Y. 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytologist 163 : 459 – 480.en_US
dc.identifier.citedreferenceKarban R, Baldwin IT. 1997. Induced responses to herbivory. Chicago, IL, USA : University of Chicago Press.en_US
dc.identifier.citedreferenceKnops JMH, Bradley KL, Wedin DA. 2002. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters 5 : 454 – 466.en_US
dc.identifier.citedreferenceKosola KR, Dickmann DI, Paul EA, Parry D. 2001. Repeated insect defoliation effects on growth, nitrogen acquisition, carbohydrates, and root demography of poplars. Oecologia 129 : 65 – 74.en_US
dc.identifier.citedreferenceKula AAR, Hartnett DC, Wilson GWT. 2005. Effects of mycorrhizal symbiosis on tallgrass prairie plant-herbivore interactions. Ecology Letters 8 : 61 – 69.en_US
dc.identifier.citedreferenceKuzyakov Y, Cheng W. 2001. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biology & Biochemistry 33 : 1915 – 1925.en_US
dc.identifier.citedreferenceLajtha K, Michener RH. 1994. Stable isotopes in ecology and environmental science. Cambridge, MA, USA : Blackwell Scientific Publications.en_US
dc.identifier.citedreferenceLipson D, NÄsholm T. 2001. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128 : 305 – 316.en_US
dc.identifier.citedreferenceLittell RC, Stroup WW, Freund RJ. 2002. SAS for linear models. Cary, NC, USA : SAS Institute, Inc.en_US
dc.identifier.citedreferenceLovett GM, Weathers KC, Arthur MA, Schultz JC. 2004. Nitrogen cycling in a northern hardwood forest: Do species matter? Biogeochemistry 67 : 289 – 308.en_US
dc.identifier.citedreferenceMaillard P, Guehl JM, Muller JF, Gross P. 2001. Interactive effects of elevated CO 2 concentration and nitrogen supply on partitioning of newly fixed C-13 and N-15 between shoot and roots of pedunculate oak seedlings ( Quercus robur ). Tree Physiology 21 : 163 – 172.en_US
dc.identifier.citedreferenceMartens R. 1990. Contribution of rhizodeposits to the maintenance and growth of soil microbial biomass. Soil Biology & Biochemistry 22 : 141 – 147.en_US
dc.identifier.citedreferenceMartin JK, Merckx R. 1992. The partitioning of photosynthetically fixed carbon within the rhizosphere of mature wheat. Soil Biology & Biochemistry 24 : 1147 – 1156.en_US
dc.identifier.citedreferenceMcNaughton SJ, Ruess RW, Seagle SW. 1988. Large mammals and process dynamics in African ecosystems. BioScience 38 : 794 – 800.en_US
dc.identifier.citedreferenceMikola J, Yeates GW, Barker GM, Wardle DA, Bonner KI. 2001a. Effects of defoliation intensity on soil food-web properties in an experimental grassland community. Oikos 92 : 333 – 343.en_US
dc.identifier.citedreferenceMikola J, Yeates GW, Barker GM, Wardle DA, Bonner KI. 2001b. Response of soil food-web structure to defoliation of different plant species combinations in an experimental grassland community. Soil Biology & Biochemistry 33 : 205 – 214.en_US
dc.identifier.citedreferenceMurakami M, Wada N. 1997. Difference in leaf quality between canopy trees and seedlings affects migration and survival of spring-feeding moth larvae. Canadian Journal of Forest Research 27 : 1351 – 1356.en_US
dc.identifier.citedreferenceNykanen H, Koricheva J. 2004. Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos 104 : 247 – 268.en_US
dc.identifier.citedreferencePaul EA, Clark FE. 1996. Soil microbiology and biochemistry. San Diego, CA, USA : Academic Press.en_US
dc.identifier.citedreferencePhillips RP, Fahey TJ. 2005. Patterns of rhizosphere carbon flux in sugar maple ( Acer saccharum ) and yellow birch ( Betula allegheniensis ) saplings. Global Change Biology 11 : 983 – 995.en_US
dc.identifier.citedreferencePowlson DS, Jenkinson DS. 1976. The effects of biocidal treatments on metabolism in soil: II. Gamma irradiation, autoclaving, air-drying and fumigation. Soil Biology & Biochemistry 8 : 179 – 188.en_US
dc.identifier.citedreferenceReich PB, Walters MB, Ellsworth DS. 1997. From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences, USA 94 : 13730 – 13734.en_US
dc.identifier.citedreferenceRuess RW, Hendrick RL, Bryant JP. 1998. Regulation of fine root dynamics by mammalian browsers in early successional Alaskan taiga forests. Ecology 79 : 2706 – 2720.en_US
dc.identifier.citedreferenceSchultz JC, Baldwin IT. 1982. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science 217 : 149 – 151.en_US
dc.identifier.citedreferenceSeely B, Lajtha K. 1997. Application of a 15 N tracer to simulate and track the fate of atmospherically deposited N in the coastal forests of the Waguoit Bay Watershed, Cape Cod, Massachusetts. Oecologia 112 : 393 – 402.en_US
dc.identifier.citedreferenceSparling GP, West AW. 1988. A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14 C labeled cells. Soil Biology & Biochemistry 20 : 337 – 343.en_US
dc.identifier.citedreferenceTempler P, Findlay S, Lovett GM. 2003. Soil microbial biomass and nitrogen transformations among five tree species of the Catskill Mountains, New York, USA. Soil Biology & Biochemistry 35 : 607 – 613.en_US
dc.identifier.citedreferenceThelen GC, Vivanco JM, Newingham B, Good W, Bais HP, Landres P, Caesar A, Callaway RM. 2005. Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecology Letters 8 : 209 – 217.en_US
dc.identifier.citedreferenceVance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry 19 : 703 – 707.en_US
dc.identifier.citedreferenceWardle DA. 2002. Communities and ecosystems: linking the aboveground and belowground components. Princeton, NJ, USA : Princeton University Press.en_US
dc.identifier.citedreferenceWhipps JM, Lynch JM. 1983. Substrate flow and utilization in the rhizosphere of cereals. New Phytologist 95 : 605 – 623.en_US
dc.identifier.citedreferenceZangerl AR. 2003. Evolution of induced plant responses to herbivores. Basic and Applied Ecology 4 : 91 – 103.en_US
dc.identifier.citedreferenceZogg GP, Zak DR, Pregitzer KS, Burton AJ. 2000. Microbial immobilization and the retention of anthropogenic nitrate in a northern hardwood forest. Ecology 81 : 1858 – 1866.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.