Show simple item record

Perinatal Hypoxic-Ischemic Brain Injury Enhances Quisqualic Acid-Stimulated Phosphoinositide Turnover

dc.contributor.authorChen, Chu-Kuangen_US
dc.contributor.authorSilverstein, Faye Sarahen_US
dc.contributor.authorFisher, Stephen K.en_US
dc.contributor.authorStatman, Danielen_US
dc.contributor.authorJohnston, Michael V.en_US
dc.date.accessioned2010-04-01T15:32:01Z
dc.date.available2010-04-01T15:32:01Z
dc.date.issued1988-08en_US
dc.identifier.citationChen, Chu-Kuang; Silverstein, Faye S.; Fisher, Stephen K.; Statman, Daniel; Johnston, Michael V. (1988). "Perinatal Hypoxic-Ischemic Brain Injury Enhances Quisqualic Acid-Stimulated Phosphoinositide Turnover." Journal of Neurochemistry 51(2): 353-359. <http://hdl.handle.net/2027.42/66017>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66017
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2839619&dopt=citationen_US
dc.description.abstractIn an experimental model of perinatal hypoxic-ischemic brain injury, we examined quisqualic acid (Quis)-stimulated phosphoinositide (PPI) turnover in hippocampus and striatum. To produce a unilateral forebrain lesion in 7-day-old rat pups, the right carotid artery was ligated and animals were then exposed to moderate hypoxia (8% oxygen) for 2.5 h. Pups were killed 24 h later and Quis-stimulated PPI turnover was assayed in tissue slices obtained from hippocampus and striatum, target regions for hypoxic-ischemic injury. The glutamate agonist Quis (10 -4 M ) preferentially stimulated PPI hydrolysis in injured brain. In hippocampal slices of tissue derived from the right cerebral hemisphere, the addition of Quis stimulated accumulation of inositol phosphates by more than ninefold (1,053 ± 237% of basal, mean ± SEM, n = 9). In contrast, the addition of Quis stimulated accumulation of inositol phosphates by about fivefold in the contralateral hemisphere (588 ± 134%) and by about sixfold in controls (631 ± 177%, p < 0.005, comparison of ischemic tissue with control). In striatal tissue, the corresponding values were 801 ± 157%, 474 ± 89%, and 506 ± 115% (p < 0.05). In contrast, stimulation of PPI turnover elicited by the cho-linergic agonist carbamoylcholine, (10 -4 or 10 -2 M ) was unaffected by hypoxia-ischemia. The results suggest that prior exposure to hypoxia-ischemia enhances coupling of excitatory amino acid receptors to phospholipase C activity. This activation may contribute to the pathogenesis of irreversible brain injury and/or to mechanisms of recovery.en_US
dc.format.extent783497 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1988 International Society for Neurochemistry Ltd.en_US
dc.subject.otherQuisqualic Aciden_US
dc.subject.otherInositol Phospholipidsen_US
dc.subject.otherHippocampusen_US
dc.subject.otherStriatumen_US
dc.subject.otherCarbamoylcholineen_US
dc.subject.otherPerinatalen_US
dc.subject.otherHypoxia-ischemiaen_US
dc.titlePerinatal Hypoxic-Ischemic Brain Injury Enhances Quisqualic Acid-Stimulated Phosphoinositide Turnoveren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pharmacology, University of Michigan Medical Schoolen_US
dc.contributor.affiliationumCenter for Human Growth and Development, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationother* Neuroscience Programen_US
dc.contributor.affiliationotherDepartment of Pediatrics and Neurologyen_US
dc.identifier.pmid2839619en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66017/1/j.1471-4159.1988.tb01046.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1988.tb01046.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAbe K., Kogure K., Yamamoto H., Imazawa M., and Miyamoto K. ( 1987 ) Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex. J. Neurochem. 48, 503 – 509.en_US
dc.identifier.citedreferenceBazan N. ( 1970 ) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218, 1 – 10.en_US
dc.identifier.citedreferenceBerridge M. J. ( 1984 ) Inositol triphosphate and diacylglycerol as second messengers. Biochem. J. 220, 345 – 360.en_US
dc.identifier.citedreferenceBerridge M. J. and Irvine R. F. ( 1984 ) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315 – 321.en_US
dc.identifier.citedreferenceBerridge M. J., Downes P. C., and Hanley M. R. ( 1982 ) Lithium amplifies agonist dependent phosphatidyl inositol response in brain and salivary gland. Biochem. J. 206, 587 – 595.en_US
dc.identifier.citedreferenceBerridge M. J., Dawson R. M. C., Downes C. P., Heslop J. P., and Irvine R. F. ( 1983 ) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoino-sitides. Biochem. J. 212, 473 – 482.en_US
dc.identifier.citedreferenceChen C.-K., Silverstein F. S., Fisher S. K., Statman D., and Johnston M. V. ( 1987 ) Perinatal hypoxia-ischemia enhances quisqualic acid stimulated phosphoinositide turnover. Soc. Neur-osci. Abstr. 13, 755.en_US
dc.identifier.citedreferenceChoi D. W., Maulucci-Gedde M., and Kriegstein A. R. ( 1987 ) Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 357 – 368.en_US
dc.identifier.citedreferenceEva C. and Costa E. ( 1986 ) Potassium ion facilitation of phosphoinositide turnover activation by muscarinic receptor agonists in rat brain. J. Neurochem. 46, 1429 – 1435.en_US
dc.identifier.citedreferenceFisher S. K. and Agranoff B. W. ( 1987 ) Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem. 48, 999 – 1017.en_US
dc.identifier.citedreferenceFisher S. K. and Bartus R. T. ( 1985 ) Regional differences in the coupling of muscarinic receptors to inositol phospholipid hydrolysis in guinea pig brain. J. Neurochem. 45, 1085 – 1095.en_US
dc.identifier.citedreferenceFisher S. K., Figueiredo J. C., and Bartus R. T. ( 1984 ) Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine. J. Neurochem. 43, 1171 – 1179.en_US
dc.identifier.citedreferenceGreenamyre J. T., Penney J. B., Young A. B., Hudson C., Silver-stein F. S., and Johnston M. V. ( 1987 ) Evidence for transient perinatal glutamatergic innervation of globus pallidum. J. Neurosci. 1022 – 1030.en_US
dc.identifier.citedreferenceHeacock A.M., Fisher S. K., and Agranoff B. W. ( 1987 ) Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover. J. Neurochem. 48, 1904 – 1911.en_US
dc.identifier.citedreferenceIadarola M. J., Nicoletti F., Naranjo J. R., Putnam F., and Costa E. ( 1986 ) Kindling enhances the stimulation of inositol phospholipid hydrolysis elicited by ibotenic acid in rat hippocampal slices. Brain Res : 374, 174 – 178.en_US
dc.identifier.citedreferenceIkeda M., Yoshida S., Busto R., Santiso M., and Ginsberg M. D. ( 1986 ) Polyphosphoinositides as a probable source of brain free fatty acids accumulated at the onset of ischemia. J. Neurochem. 47, 123 – 132.en_US
dc.identifier.citedreferenceJohnston M. V. ( 1983 ) Neurotransmitter alterations in a model of perinatal hypoxic-ischemic brain injury. Ann. Neurol. 16, 511 – 518.en_US
dc.identifier.citedreferenceJorgensen M. D. and Diemer N. A. ( 1982 ) Selective neuron loss after cerebral ischemia in the rat: possible role of transmitter glutamate. Acta Neurol. Scand. 66, 536 – 546.en_US
dc.identifier.citedreferenceKirino T. ( 1981 ) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239, 57 – 69.en_US
dc.identifier.citedreferenceLowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. ( 1951 ) Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193, 265 – 275.en_US
dc.identifier.citedreferenceMeldrum B. ( 1985 ) Excitatory amino acids and anoxic-ischemic brain damage. Trends Neurosci. 47 – 48.en_US
dc.identifier.citedreferenceNicoletti F., Iadorola M. J., Wroblewski J. T., and Costa E. ( 1986a ) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem. 46, 40 – 46.en_US
dc.identifier.citedreferenceNicoletti F., Iadarola M. J., Wroblewski J. T., and Costa E. ( 1986b ) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with alpha 1 -adrenoreceptors. Proc. Natl. Acad. Sci. USA 83, 1931 – 1935.en_US
dc.identifier.citedreferenceNishizuka Y. ( 1986 ) Turnover of inositol phospholipids and signal transduction. Science 233, 305 – 312.en_US
dc.identifier.citedreferencePearce B., Albrecht B., Morrow C., and Murphy S. ( 1986a ) Astro-cyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux. Neurosci. Leu. 72, 335 – 340.en_US
dc.identifier.citedreferencePearce B., Morrow C., and Murphy S. ( 1986b ) Receptor mediated inositol phospholipid hydrolysis in astrocytes. Eur. J. Pharmacol. 121, 231 – 243.en_US
dc.identifier.citedreferenceRaichle M. ( 1983 ) The pathophysiology of brain ischemia. Ann. Neurol. 13, 2 – 10.en_US
dc.identifier.citedreferenceRothman S. and Olney J. ( 1986 ) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 19, 105 – 111.en_US
dc.identifier.citedreferenceSilverstein F. S., Chen R. C., and Johnston M. V. ( 1986 ) The glutamate agonist quisqualic acid is neurotoxic in striatum and hippocampus of immature rat brain. Neurosci Lett. 71, 13 – 18.en_US
dc.identifier.citedreferenceSilverstein F. S., Torke L., Barks J., and Johnston M. V. ( 1987 ) Hypoxia-ischemia produces focal disruption of glutamate receptors in developing brain. Dev. Brain Res. 34, 33 – 39.en_US
dc.identifier.citedreferenceSimon R. P., Griffiths T., Evans M. C., Swan J. H., and Meldrum B. S. ( 1984 ) Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy study in the rat. J. Cereb. Blood Flow Metab. 4, 350 – 361.en_US
dc.identifier.citedreferenceSladeczek F., Pin J. P., Recasens M., Bockart J., and Weiss S. ( 1985 ) Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 311, 717 – 719.en_US
dc.identifier.citedreferenceWesterberg E. and Wieloch T. ( 1986 ) Lesions to the corticostriatal pathways ameliorate hypoglycemia-induced arachidonic acid release. J. Neurochem. 47, 1507 – 1511.en_US
dc.identifier.citedreferenceYoshida S., Ikeda M., Busto R., Santiso M., Martinez E., and Ginsberg M. ( 1986 ) Cerebral phosphoinositide, triacylglyc-erol, and energy metabolism in reversible ischemia: origin and fate of free fatty acids. J. Neurochem. 47, 744 – 757.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.