Show simple item record

Effects of Osmolality and Ionic Strength on Secretion from Adrenal Chromaffin Cells Permeabilized with Digitonin

dc.contributor.authorHolz, Ronald W.en_US
dc.contributor.authorSenter, Ruth A.en_US
dc.date.accessioned2010-04-01T15:33:24Z
dc.date.available2010-04-01T15:33:24Z
dc.date.issued1986-06en_US
dc.identifier.citationHolz, Ronald W.; Senter, Ruth A. (1986). "Effects of Osmolality and Ionic Strength on Secretion from Adrenal Chromaffin Cells Permeabilized with Digitonin." Journal of Neurochemistry 46(6): 1835-1842. <http://hdl.handle.net/2027.42/66041>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66041
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2871131&dopt=citationen_US
dc.description.abstractHyperosmotic solutions inhibit exocytosis of catecholamine from adrenal chromaffin cells at a step after Ca 2+ entry into the cells. The possibility that the inhibition resulted from an inability of shrunken secretory granules to undergo exocytosis was investigated in cells with plasma membranes permeabilized by digitonin. The osmoticants and salts used in this study rapidly equilibrated across the plasma membrane and bathed the intracellular organelles. When sucrose was the osmoticant, secretion was not significantly inhibited unless the osmolality was raised above 1,000 mOs. When the osmolality was raised with the tetrasaccharide stachyose or a low-molecular-weight maltodextrin fraction (average size a tetrasaccharide), one-half maximal inhibition occurred at 900–1,000 mOs. Prior treatment of permeabilized cells with Ca 2+ in hyperosmotic solution did not result in enhanced secretion when cells were restored to normal osmolality. Increased concentrations of potassium glutamate or sodium isethionate were more potent than carbohydrate in inhibiting secretion. Half-maximal inhibition occurred at 600–700 mOs or when the ionic strength was approximately doubled. The inhibition by elevated potasium glutamate also occurred when the osmolality was kept constant with sucrose. Increasing the ionic strength did not alter the Ca 2+ sensitivity of the secretory response. Reducing the ionic strength by substituting sucrose for salt reduced the Ca 2+ concentration required for half-maximal stimulated secretion from approximately 1.2 Μ M . Chromaffin granules, the secretory granules, are known to shrink in hyperosmotic solution. The experiments indicate that shrunken chromaffin granules can undergo exocytosis and suggest that in intact cells elevated ionic strength rather than chromaffin granule shrinkage contributes to the inhibition of secretion by hyperosmotic solutions. The experiments place limits on the possible osmotic mechanisms that could be involved in exocytosis.en_US
dc.format.extent850152 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1986 International Society for Neurochemistryen_US
dc.subject.otherOsmolalityen_US
dc.subject.otherIonic Strengthen_US
dc.subject.otherCatecholamine Exocytosisen_US
dc.subject.otherAdrenal Chromaffin Cellsen_US
dc.subject.otherDigitoninen_US
dc.subject.otherCarbohydratesen_US
dc.titleEffects of Osmolality and Ionic Strength on Secretion from Adrenal Chromaffin Cells Permeabilized with Digitoninen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid2871131en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66041/1/j.1471-4159.1986.tb08502.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1986.tb08502.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAffolter H. and Sigel E. ( 1979 ) A simple system for the measurement of ion activities with solvent polymeric membrane electrodes. Anal. Biochem. 97, 315 – 319.en_US
dc.identifier.citedreferenceBaker P. F. and Knight D. E. ( 1984 ). Chemosmotic hypothesis of exocytosis: a critique. Biosci. Rep. 4, 285 – 298.en_US
dc.identifier.citedreferenceBrown W. M., Pazoles C. J., Creutz C. E., Aurbach G. D., and Pollard H. B. ( 1978 ) Role of anions in parathyroid release from dispersed bovine parathyroid cells. Proc. Natl. Acad. Sci. USA 75, 876 – 880.en_US
dc.identifier.citedreferenceCohen F. S., Akabas M. H., and Finkelstein A. ( 1982 ) Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. Science 217, 458 – 460.en_US
dc.identifier.citedreferenceDouglas W. W. and Poisner A. M. ( 1961 ) Stimulation of uptake of calcium-45 in the adrenal gland by acetylcholine. Nature 162, 1299.en_US
dc.identifier.citedreferenceDunn L. A. and Holz R. W. ( 1983 ) Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells. J. Biol. Chem. 258, 4989 – 4993.en_US
dc.identifier.citedreferencePabiato A. and Fabiato F. ( 1979 ) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J. Physiol. (Paris) 75, 463 – 505.en_US
dc.identifier.citedreferencePenwick E. M., Fajdiga B., Howe N. B. S., and Livett B. G. ( 1978 ) Functional and morphological characterization of isolated bovine adrenal medullary cells. J. Cell Biol. 76, 12 – 30.en_US
dc.identifier.citedreferenceFrye R. A. and Holz R. W. ( 1985 ) Arachidonic acid release and catecholamine secretion from digitonin-treated chromaffin cells: effects of micromolar calcium, phorbol ester, and protein alkylating agents. J. Neurochem. 44, 265 – 273.en_US
dc.identifier.citedreferenceHampton R. Y. and Holz R. W. ( 1983 ). The effects of osmolality on the stability and function of cultured chromaffin cells and the role of osmotic forces in exocytosis. J. Cell Biol. 96, 1082 – 1088.en_US
dc.identifier.citedreferenceHolz R. W. and Senter R. A. ( 1985 ) Plasma membrane and chromaffin granule characteristics in digitonin-treated chromaffin cells. J. Neurochem. 45, 1548 – 1557.en_US
dc.identifier.citedreferenceHolz R. W., Senter R. A., and Frye R. A. ( 1982 ) Relationship between Ca 2+ uptake and catecholamine secretion in primary dissociated cultures of adrenal medulla. J. Neuro chem. 39, 635 – 646.en_US
dc.identifier.citedreferenceKachadorian W. A., Muller J., and Finkelstein A. ( 1981 ) Role of osmotic forces in exocytosis: studies of ADH-induced fusion in toad urinary bladder. J. Cell Biol. 91, 584 – 588.en_US
dc.identifier.citedreferenceKilpatrick D. L., Ledbetter F. H., Carson K. A., Kirshner A. G., Slepetis R., and Kirshner N. ( 1980 ) Stability of bovine adrenal medulla cells in culture. J. Neurochem. 35, 679 – 692.en_US
dc.identifier.citedreferenceKilpatrick D. L., Slepetis R. J., Corcoran J. J., and Kirshner N. ( 1982 ) Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J. Neurochem. 38, 427 – 435.en_US
dc.identifier.citedreferenceKnight D. E. and Baker P. E. ( 1982 ) Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J. Membr. Biol. 68, 107 – 140.en_US
dc.identifier.citedreferenceKnight D. E. and Kesteven N. T. ( 1983 ) Evoked transient intracellular free Ca 2+ changes and secretion in isolated bovine adrenal medullary cells. Proc. R. Soc. Lond. [Biol.] 218, 177 – 199.en_US
dc.identifier.citedreferenceKopell W. N. and Westhead E. W. ( 1982 ) Osmotic pressures of ATP and catecholamines relating to storage in chromaffin granules. J. Biol. Chem. 257, 5707 – 5710.en_US
dc.identifier.citedreferenceLishajko F. ( 1970 ) Osmotic factors determining the release of catecholamines from isolated chromaffin granules. Acta Physiol. Scand. 79, 64 – 75.en_US
dc.identifier.citedreferencePerlman R. L. ( 1976 ) The permeability of chromaffin granules to non-electrolytes. Biochem. Pharmacol. 25, 1035 – 1038.en_US
dc.identifier.citedreferencePollard H. B., Pazoles C. J., Creutz C. E., Scott J. H., Zinder O., and Hotchkiss A. ( 1984 ) An osmotic mechanism for exocytosis from dissociated chromaffin cells. J. Biol. Chem. 259, 1114 – 1121.en_US
dc.identifier.citedreferencePortzehl H., Caldwell P. C., and Ruegg J. C. ( 1964 ) The dependence of contraction and relaxation of muscle fibers from the crab Maia Squinado on the internal concentration of free calcium ions. Biochim. Biophys. Acta 79, 581 – 591.en_US
dc.identifier.citedreferenceSen R. and Sharp R. R. ( 1982 ) Molecular mobilities and the lowered osmolality of the chromaffin granule aqueous phase. Biochim. Biophys. Acta 74, 70 – 82.en_US
dc.identifier.citedreferenceSudhof T. C. ( 1982 ) Core structure, internal osmotic pressure and irreversible structural changes of chromaffin granules during osmometer behavior. Biochim. Biophys. Acta 684, 27 – 39.en_US
dc.identifier.citedreferenceWilson S. P. and Kirshner N. ( 1983 ) Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells. J. Biol. Chem. 258, 4994 – 5000.en_US
dc.identifier.citedreferenceZimmerberg J. and Whitaker M. ( 1985 ) Irreversible swelling of secretory granules during exocytosis caused by calcium. Nature 315, 581 – 584.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.