Show simple item record

Phosphoglycerates and Protein Phosphorylation: Identification of a Protein Substrate as Glucose-1,6-Bisphosphate Synthetase

dc.contributor.authorMorino, Hideoen_US
dc.contributor.authorFischer-Bovenkerk, Carolynen_US
dc.contributor.authorKish, Phillip E.en_US
dc.contributor.authorUeda, Tetsufumien_US
dc.date.accessioned2010-04-01T15:34:01Z
dc.date.available2010-04-01T15:34:01Z
dc.date.issued1991-03en_US
dc.identifier.citationMorino, Hideo; Fischer-Bovenkerk, Carolyn; Kish, Phillip E.; Ueda, Tetsufumi (1991). "Phosphoglycerates and Protein Phosphorylation: Identification of a Protein Substrate as Glucose-1,6-Bisphosphate Synthetase." Journal of Neurochemistry 56(3): 1049-1057. <http://hdl.handle.net/2027.42/66052>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66052
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=1847181&dopt=citationen_US
dc.description.abstractWe have previously reported the occurrence of two endogenous protein phosphorylation systems in mammalian brain that are enhanced in the presence of 3-phosphoglycerate (3PG) and ATP. We present here a study of one of these systems, the phosphorylation of the 72-kDa protein (3PG-PP 72 ). This system was separated into the substrate, 3PG-PP 72 , and a kinase by ammonium sulfate fractionation, hydroxyapatite chromatography, and hydrophobic interaction HPLC. The substrate protein was shown to be directly phosphorylated with [1- 32 P]1,3-bisphosphoglycerate ([1- 32 P]1,3BPG) with an apparent K m of 1.1 n M . Nonradioactive 1,3BPG inhibited 32 P incorporation in the presence of [Γ- 32 P]ATP and 3PG. Phosphopeptide mapping and phosphoamino acid analyses indicated that the site of phosphorylation of 3PG-PP 72 observed in the presence of 3PG and ATP is a serine residue identical to that observed with [1- 32 P]1,3BPG. Moreover, [ 32 P]phosphate incorporated into 3PG-PP 72 in the presence of 3PG and ATP was removed by subsequent incubation with glucose-1-phosphate or glucose-6-phosphate. Finally, 3PG-PP 72 showed chromatographic behaviors identical to those of glucose-1,6-bisphosphate (G1,6P 2 ) synthetase. Based upon these observations, we conclude that 3PG-PP 72 is G1,6P 2 synthetase and that it is phosphorylated directly by 1,3BPG, which is formed from 3PG and ATP by 3PG kinase present in a crude 3PG-PP 72 preparation.en_US
dc.format.extent1249271 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1991 International Society for Neurochemistry Ltd.en_US
dc.subject.otherProtein Phosphorylationen_US
dc.subject.other3-Phosphoglycerateen_US
dc.subject.otherPhosphoproteinen_US
dc.subject.otherGlucose-1,6-bisphosphate Synthetaseen_US
dc.subject.other1,3-Bis-Phosphoglycerateen_US
dc.subject.otherBrainen_US
dc.titlePhosphoglycerates and Protein Phosphorylation: Identification of a Protein Substrate as Glucose-1,6-Bisphosphate Synthetaseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum† Departments of Pharmacology and Psychiatry, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid1847181en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66052/1/j.1471-4159.1991.tb02028.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1991.tb02028.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBeitner R., ed. ( 1985 ) Regulation of Carbohydrate Metabolism, Vol. 1: Glucose-1,6-Bisphosphate—The Regulator of Carbohydrate Metabolism, pp. 1 – 27. CRC Press, Boca Raton.en_US
dc.identifier.citedreferenceCox D. W. G. and Bachelard H. S. ( 1982 ) Attenuation of evoked field potentials from dentate granule cells by low glucose, pyruvate, malate, and sodium fluoride. Brain Res. 239, 527 – 534.en_US
dc.identifier.citedreferenceDirks B., Hanke H., Krieglstein J., Stock R., and Wickop G. ( 1980 ) Studies on the linkage of energy metabolism and activity in the isolated perfused rat brain. J. Neurochem. 35, 311 – 317.en_US
dc.identifier.citedreferenceGhajar J. B. G., Plum F., and Duffy T. E. ( 1982 ) Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J. Neurochem. 38, 397 – 409.en_US
dc.identifier.citedreferenceHuttner W. B. and Greengard P. ( 1979 ) Multiple phosphorylation sites in protein I and their differential regulation by cyclic AMP and calcium. Proc. Natl. Acad. Sci. USA 76, 5402 – 5406.en_US
dc.identifier.citedreferenceLowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. ( 1951 ) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 – 275.en_US
dc.identifier.citedreferenceLowry O. H., Passonneau J. V., Hasselberger F. X., and Schultz D. W. ( 1964 ) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in the brain. J. Biol. Chem. 239, 18 – 30.en_US
dc.identifier.citedreferenceMinakami S. and Yoshikawa H. ( 1965 ) Thermodynamic considerations on erythrocyte glycolysis. Biochem. Biophys. Res. Commun. 18, 345 – 349.en_US
dc.identifier.citedreferenceNegelein E. ( 1957 ) Synthesis, determination, analysis and properties of 1,3-diphosphoglyceric acid, in Methods in Enzymology, Vol. 3 ( Colowick S. P. and Kaplan N. O., eds ), pp. 216 – 220. Academic Press, New York.en_US
dc.identifier.citedreferenceNestler E. J. and Greengard P. ( 1984 ) Protein Phosphorylation in the Nervous System. John Wiley & Sons, New York.en_US
dc.identifier.citedreferenceRose I. A., Warms J. V. B., and Kaklij G. ( 1975 ) A specific enzyme for glucose 1,6-bisphosphate synthesis. J. Biol. Chem. 250, 3466 – 3470.en_US
dc.identifier.citedreferenceRose I. A., Warms J. V. B., and Wong L. J. ( 1977 ) Inhibitors of glucose-1,6-bisphosphate synthetase. J. Biol. Chem. 252, 4262 – 4268.en_US
dc.identifier.citedreferenceRose Z. B. ( 1968 ) The purification and properties of diphosphoglycerate mutase from human erythrocytes. J. Biol. Chem. 243, 4810 – 4820.en_US
dc.identifier.citedreferenceRose Z. B. ( 1986 ) The glucose bisphosphate family of enzymes. Trends Biol. Sci. 7, 253 – 255.en_US
dc.identifier.citedreferenceRose Z. B. and Whalen R. G. ( 1973 ) The phosphorylation of diphosphoglycerate mutase. J. Biol. Chem. 248, 1513 – 1519.en_US
dc.identifier.citedreferenceScopes R. K. ( 1975 ) 3-Phosphoglycerate kinase of skeletal muscle, in Methods in Enzymology, Vol. 42 ( Woods W. A., ed ), pp. 127 – 134. Academic Press, New York.en_US
dc.identifier.citedreferenceSiesjÖ B. K. ( 1978 ) Brain Energy Metabolism, pp. 101 – 130. John Wiley & Sons, New York.en_US
dc.identifier.citedreferenceSokoloff L., Reivich M., Kennedy M., des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., and Shinohara M. ( 1977 ) The [ 14 C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897 – 916.en_US
dc.identifier.citedreferenceStratford C. A., Fisher S. K., and Ueda T. ( 1984 ) Ergopeptine-sensitive calcium-dependent protein phosphorylation system in the brain. J. Neurochem. 42, 842 – 855.en_US
dc.identifier.citedreferenceUeda T. and Greengard P. ( 1977 ) Adenosine 3′:5′-monophosphate-regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification, and some properties of an endogenous phosphoprotein. J. Biol. Chem. 252, 5155 – 5156.en_US
dc.identifier.citedreferenceUeda T. and Plagens D. G. ( 1987 ) 3-Phosphoglycerate-dependent protein phosphorylation. Proc. Natl. Acad. Sci. USA 84, 1229 – 1233.en_US
dc.identifier.citedreferenceUeda T., Maeno H., and Greengard P. ( 1973 ) Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′:5′ monophosphate. J. Biol. Chem. 248, 8295 – 8305.en_US
dc.identifier.citedreferenceUeda T., Greengard P., Berzins K., Cohen R. S., Blomberg F., Grab D. J., and Siekevitz P. ( 1979 ) Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent protein kinase. J. Cell Biol. 83, 308 – 319.en_US
dc.identifier.citedreferenceWinkler B. S. ( 1981 ) Glycolytic and oxidative metabolism in relation to retinal function. J. Gen. Physiol. 77, 667 – 692.en_US
dc.identifier.citedreferenceWong L. J. and Rose I. ( 1976 ) Kinetic competence of a phosphoryl enzyme intermediate in the glucose-1,6-P 2 synthase-catalyzed reaction. J. Biol. Chem. 251, 5431 – 5439.en_US
dc.identifier.citedreferenceYip V., Carter J. G., Dick E., Rose Z. B., and Lowry O. H. ( 1985 ) Distribution of glucose-1,6-bisphosphate and IMP-activated glucose bisphosphatase in brain and retina. J. Neurochem. 44, 1741 – 1746.en_US
dc.identifier.citedreferenceYip V., Pusateri M. E., Carter J., Rose I. A., and Lowry O. H. ( 1988 ) Distribution of the glucose-1,6-bisphosphate system in brain and retina. J. Neurochem. 50, 594 – 602.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.