Show simple item record

Identification of Multiple Phosphoinositide-Linked Receptors on Human SK-N-MC Neuroepithelioma Cells

dc.contributor.authorFisher, Stephen K.en_US
dc.contributor.authorLandon, Rachel E.en_US
dc.date.accessioned2010-04-01T15:36:38Z
dc.date.available2010-04-01T15:36:38Z
dc.date.issued1991-11en_US
dc.identifier.citationFisher, Stephen K.; Landon, Rachel E. (1991). "Identification of Multiple Phosphoinositide-Linked Receptors on Human SK-N-MC Neuroepithelioma Cells." Journal of Neurochemistry 57(5): 1599-1608. <http://hdl.handle.net/2027.42/66097>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66097
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=1681032&dopt=citationen_US
dc.description.abstract:The biochemical and pharmacological characteristics of receptor-stimulated phosphoinositide (PPI) hydrolysis in human SK-N-MC neuroepithelioma cells have been examined. Of 11 ligands tested, the addition of four, i.e., nor-epinephrine, oxotremorine-M, endothelin-1, and ATP, each resulted in an increased release (three-to eightfold) of inositol phosphates from [ 3 H]inositol-prelabeled cells. Agonist-stimulated PPI turnover was sustained for at least 30 min and required the addition of Ca 2+ for full effect. An increased release of inositol phosphates could also be elicited by the addition of the Ca 2+ ionophore, ionomycin. All four agonists enhanced the release of radiolabeled inositol mono-and bis-phosphates, inositol 1,3,4-trisphosphate, and inositol tetra-kisphosphate. Increases in inositol 1,4,5-trisphosphate were smaller and only consistently observed in the presence of norepinephrine or oxotremorine-M. Norepinephrine-stim-ulated PPI turnover was potently inhibited by prazosin, WB-4101, and 5-methylurapidil ( K 1 , < 2.5 n M ), but was relatively insensitive to chloroethylclonidine pretreatment. This pharmacological profile is consistent with the involvement of an Α 1A -receptor subtype. The presence of an M 1 muscannic cholinergic receptor is also indicated, because pirenzepine blocked oxotremorine-M-stimulated inositol phosphate release ( K 1 = 35 n M ) with a 30-fold greater potency than the M 2 -selective antagonist, AF-DX 116. Of the three endothelins tested, only the addition of endothelin-1 and endothelin-2 promoted PPI hydrolysis, whereas endothelin-3 was essentially inactive. A P 2 nucleotide receptor of broad agonist specificity is also present on these cells and activates PPI turnover in the absence of a generalized increase in plasma membrane permeability. These results indicate that SK-N-MC cells express at least four PPI-linked receptors. Because the functional coupling of three of these receptors, i.e., Α 1A -adrenergic, endothelin, and P 2 nucleotide, has not been extensively characterized previously in neural tissues, the SK-N-MC cell line may provide a useful model system for studies of these receptors and their regulation.en_US
dc.format.extent1111841 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1991 International Society for Neurochemistryen_US
dc.subject.otherPhosphoinositide Hydrolysisen_US
dc.subject.otherNeuroepitheliomaen_US
dc.subject.otherM, Muscannic Cholinergic Receptoren_US
dc.subject.otherΑ 1A -Adrenergic Receptoren_US
dc.subject.otherP 2 Nucleotide Receptoren_US
dc.subject.otherEndothelinen_US
dc.titleIdentification of Multiple Phosphoinositide-Linked Receptors on Human SK-N-MC Neuroepithelioma Cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumNeuroscience Laboratory, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum* Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid1681032en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66097/1/j.1471-4159.1991.tb06357.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1991.tb06357.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAllsup D. J., and Boarder M. R. ( 1990 ) Comparison of P 2 purinergic receptors of aortic endothelial cells with those of adrenal medulla: evidence for heterogeneity of receptor subtype and of inositol phosphate response. Mol. Pharmacol 38, 84 – 91.en_US
dc.identifier.citedreferenceArai H., Hori S., Aramori I., Ohkubo H., and Nakanishi S. ( 1990 ) Cloning and expression of a cDNA encoding an endothelm receptor. Nature 348, 730 – 732.en_US
dc.identifier.citedreferenceAshkenazi A., Ramachandran J., and Capon D. ( 1989 ) Acetylcholine analogue stimulates DNA synthesis in brain derived cells via specific muscarinic receptor subtypes, Nature 340, 146 – 150.en_US
dc.identifier.citedreferenceBatty I. H., and Nahorski S. R. ( 1989 ) Rapid accumulation and sustained turnover of inositol phosphates in cerebral-cortex slices after muscarinic-receptor stimulation. Biochem J. 260, 237 – 241.en_US
dc.identifier.citedreferenceBiedler J. L., Helson L., and Spengler B. A. ( 1973 ) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 33, 2643 – 2652.en_US
dc.identifier.citedreferenceBonner T. I., Young A. C., Brann M. R., and Buckley N. J. ( 1988 ) Goning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1, 403 – 410.en_US
dc.identifier.citedreferenceBrown E., Kendall D. A., and Nahorski S. R. ( 1984 ) Inositol phos-pholipid hydrolysis in rat cerebral conical slices. 1. Receptor characterisation. J. Neurachem. 42, 1379 – 1387.en_US
dc.identifier.citedreferenceBurnstock G. and Kennedy C. ( 1985 ) Is there a basis for distinguishing two types of P 2 -purinoceptor ? Gen. Pharmacol 16, 433 – 440.en_US
dc.identifier.citedreferenceCheng Y.-C. and Prusoff W. H. ( 1973 ) Relationship between the inhibition constant ( K 1 ) and the concentration of inhibitor which causes 50 percent inhibition (IC 50 ) of an enzymatic reaction. Biochem. Pharmacol 22, 3099 – 3108.en_US
dc.identifier.citedreferenceCockcroft S. and Gomperts B. D. ( 1979 ) ATP induces nucleotide permeability in rat mast cells. Nature 279, 541 – 542.en_US
dc.identifier.citedreferenceCrawford M. L. A., Hiley C. R., and Young J. M. ( 1990 ) Characteristics of endothelint and endothelm-3 stimulation of phospho-inositide breakdown differ between regions of guinea-pig and rat brain. Naunvn-Schmiedebergs Atch Pharmacol. 341, 268 – 271.en_US
dc.identifier.citedreferenceDavidson J. S., Wakefield I. K., Sohnius U., van der Merwe P. A., and Millar R. P. ( 1990 ) A novel extracellular nucleotide receptor coupled to phosphoinositidase-C in pituitary cells. Endocrinology 126, 80 – 87.en_US
dc.identifier.citedreferenceEllis J., Huyler J. H., Kemp D. E., and Weiss S. ( 1990 ) Muscarinic receptors and second-messenger responses of neurons in primary culture. Brain Res. 511, 234 – 240.en_US
dc.identifier.citedreferenceFine J., Cole P., and Davidson J. S. ( 1989 ) Extracellular nucleotides stimulate receptor-mediated calcium mobilization and inositol phosphate production in human fibroblasts. Biochem. J. 263, 371 – 376.en_US
dc.identifier.citedreferenceFisher S. K., and Agranoff B. W. ( 1987 ) Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem. 48, 999 – 1016.en_US
dc.identifier.citedreferenceFisher S. K., and Bartus R. T. ( 1985 ) Regional differences in the coupling Of muscarinic receptors to inositol phospholipid hydrolysis in guinea pig brain. J. Neurochem. 45, 1085 – 1095.en_US
dc.identifier.citedreferenceFisher S. K., and Heacock A. M. ( 1988 ) A putative M 3 muscarinic cholinergic receptor of high molecular weight couples to phos-phoinositide hydrolysis in human SK-N-SH neuroblastoma cells. J. Neurochem. 50, 984 – 987.en_US
dc.identifier.citedreferenceFisher S. K., and Snider R. M. ( 1987 ) Differential receptor occupancy requirements for muscarinic cholinergic stimulation of inositol lipid hydrolysis in brain and in neuroblastomas. Mol. Pharmacol. 32, 81 – 90.en_US
dc.identifier.citedreferenceFisher S. K., Figueiredo J. C., and Bartus R. T. ( 1984 ) Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine. J. Neurochem. 43, 1171 – 1179.en_US
dc.identifier.citedreferenceFisher S. K., Domask L. M., and Roland R. M. ( 1989 ) Muscarinic receptor regulation of cytoplasmic Ca 2+ concentrations in human SK-N-SH neuroblastoma cells: Ca 2+ requirements for phospho-lipase C activation. Mol. Pharmacol. 35, 195 – 204.en_US
dc.identifier.citedreferenceFisher S. K., Heacock A. M., Seguin E. B., and Agranoff B. W. ( 1990 ) Polyphosphoinositides are the major source of inositol phosphates in carbamoylcholine-stimulated SK-N-SH neuroblastoma cells. Mol. Pharmacol. 38, 54 – 63.en_US
dc.identifier.citedreferenceForray C. and EI-Fakahany E. ( 1990 ) On the involvement of multiple muscarinic receptor subtypes in the activation of phosphoino-sitide metabolism in rat cerebral cortex. Mol. Pharmacol. 37, 893 – 902.en_US
dc.identifier.citedreferenceGeiger P. J., and Bessman S. P. ( 1972 ) Protein determination by Lowry's method in the presence of sulfhydryl reagents. Anal. Biochem. 49, 467 – 473.en_US
dc.identifier.citedreferenceGonzalez R. A., and Crews F. T. ( 1984 ) Characterization of the cholinergic stimulation of phosphoinositide hydrolysis in rat brain slices. J. Neurosci. 44, 3120 – 3127.en_US
dc.identifier.citedreferenceGreenberg S., Di Virgilio F., Steinberg T. H., and Silverstein S. C. ( 1988 ) Extracellular nucleotides mediate Ca 2+ fluxes in 1774 macrophages by two distinct mechanisms. J. Biol. Chem. 263, 10337 – 10343.en_US
dc.identifier.citedreferenceHan C., Wilson K. M., and Minneman K. P. ( 1990 ) Α 1,-Adrenergic receptor subtypes and formation of inositol phosphates in dispersed hepatocytes and renal cells. Mol. Pharmacol. 37, 903 – 910.en_US
dc.identifier.citedreferenceHanft G. and Gross G. ( 1989 ) Subclassification of Α 1,-adrenoceptor recognition sites by urapidil derivatives and other selective antagonists. Br. J. Pharmacol. 97, 691 – 700.en_US
dc.identifier.citedreferenceHeacock A. M., Seguin E. B., and Agranoff B. W. ( 1990 ) Developmental and regional studies of the metabolism of inositol 1,4,5-trisphosphate in rat brain. J. Neurochem. 54, 1405 – 1411.en_US
dc.identifier.citedreferenceHonegger P. and Richelson E. ( 1976 ) Biochemical differentiation of mechanically dissociated mammalian brain in aggregating cell culture. Brain Res. 109, 335 – 354.en_US
dc.identifier.citedreferenceHorstman D. A., Takemura H., and Putney J. W. Jr. ( 1988 ) Formation and metabolism of ( 3 H]inositol phosphates in AR42J pancreatoma cells. J. Biol. Chem. 263, 15297 – 15303.en_US
dc.identifier.citedreferenceHughes A. R., and Putney J. W. Jr. ( 1989 ) Source of 3 H-labeled inositol bis-and monophosphates in agonist-activated rat parotid acinar cells. J. Biol. Chem. 264, 9400 – 9407.en_US
dc.identifier.citedreferenceJohnson R. D., and Minneman K. P. ( 1986 ) Characterization of Α 1 adrenoceptors which increase cyclic AMP accumulation in rat cerebral cortex. Eur J Pharmacol. 129, 293 – 305.en_US
dc.identifier.citedreferenceJones C. R., Hiley C. R., Pelton J. T., and Mohr M. ( 1989 ) Auto-radiographic visualization of the binding sites for [ 125 I]endothelin in rat and human brain. Neurosci. Lett 97, 276 – 279.en_US
dc.identifier.citedreferenceKloog Y., Ambar I., Sokolovsky M., Kochva E., Wollberg Z., and Bdolah A. ( 1988 ) Sarafotoxm, a novel vasoconstrictor peptide phosphoinositide hydrolysis in rat heart and brain. Science 242, 268 – 270.en_US
dc.identifier.citedreferenceKloog Y., Bousso-Mittler D., Bdolah A., and Sokolovsky M. ( 1989a ) Three apparent receptor subtypes for the endothelin/sarafotoxm family. FEBS Lett 253, 199 – 202.en_US
dc.identifier.citedreferenceKloog Y., Ambar I., Kochva E., Wollberg Z., Bdolah A., and Sokolovsky M. ( 1989b ) Sarafotoxin receptors mediate phosphoinositide hydrolysis in various rat brain regions. FEBS Lett 242, 387 – 390.en_US
dc.identifier.citedreferenceKunysz E., Michel A. D., Whiting R. L., and Woods K. ( 1989 ) The human astrocytoma cell line 1321 N 1 contains M 2 -glandular type muscarinic receptors linked to phosphoinositide turnover Br J Pharmacol. 96, 271 – 278.en_US
dc.identifier.citedreferenceLin W.-W., Lee C. Y., and Chuang D.-M. ( 1990 ) Comparative studies of phosphoinositide hydrolysis induced by endothelin-related peptides in cultured cerebellar astrocytes, C 6 -glioma and cerebellar granule cells. Biochem. Biophys. Res. Commun. 168, 512 – 519.en_US
dc.identifier.citedreferenceMacCumber M. W., Ross C. A., and Snyder S. H. ( 1990 ) Endothelin in brain: receptors, ontogenesis, and biosynthesis in glial cells Proc. Natl. Acad. Sci. USA 87, 2359 – 2363.en_US
dc.identifier.citedreferenceMartin M. W., and Harden T. K. ( 1989 ) Agonist-induced desensitization of a P 2, purinergic receptor-regulated phospholipase C J. Biol. Chem. 264, 19535 – 19539.en_US
dc.identifier.citedreferenceMcKeon C., Thiele C. J., Ross R. A., Kwan M., Triche T. J., Miser J. S., and Israel M. A. ( 1988 ) Indistinguishable patterns of protooncogene expression in two distinct but closely related tumors Ewing's sarcoma and neuroepithelioma. Cancer Res. 48, 4307 – 4311.en_US
dc.identifier.citedreferenceMichel M. C., Hanft G., and Gross G. ( 1990 ) Α 1B -but not Α 1A -ad-renoceptors mediate inositol phosphate generation. Naunyn Schmiedebergs Arch. Pharmacol. 341, 385 – 387.en_US
dc.identifier.citedreferenceMinneman K. P. ( 1988 ) Α 1 -Adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca 2+. Pharmacol. Rev. 40, 87 – 119.en_US
dc.identifier.citedreferenceMinneman K. P., and Johnson R. D. ( 1984 ) Characterization of alpha 1 adrenergic receptors linked to [ 3 H]tnositoI metabolism in rat cerebral cortex. J. Pharmacol Exp. Ther. 230, 317 – 323.en_US
dc.identifier.citedreferencePearce B., Murphy S., Jeremy J., Morrow C., and Dandona P. ( 1989 ) ATP-evoked Ca 2+ mobilisation and prostanoid release from astrocytes: Prpurinergic receptors linked to phosphoinositide hydrolysis. J. Neurochem. 52, 971 – 977.en_US
dc.identifier.citedreferencePfeilschifter J. ( 1990 ) Comparison of extracellular ATP and UTP signalling in rat renal mesangial cells. Biochem. J. 272, 469 – 472.en_US
dc.identifier.citedreferenceSakurai T., Yanagisawa M., Takuwa Y., Miyazaki H., Kimura S., Goto K., and Masaki T. ( 1990 ) Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348, 732 – 735.en_US
dc.identifier.citedreferenceSasakawa N., Nakaki T., Yamamoto S., and Kato R. ( 1989 ) Stimulation by ATP of inositol trisphosphate accumulation and calcium mobilization in cultured adrenal chromaffin cells. J. Neurochem. 52, 441 – 441.en_US
dc.identifier.citedreferenceSchoepp D. D., Knepper S. M., and Rutledge C. O. ( 1984 ) Norepinephrine stimulation of phosphoinositide hydrolysis in rat cerebral cortex is associated with the alpha 1 -adrenoceptor. J. Neurochem. 43, 1758 – 1761.en_US
dc.identifier.citedreferenceShears S. B. ( 1989 ) Metabolism of the inositol phosphates produced upon receptor activation. Biochem. J. 260, 313 – 324.en_US
dc.identifier.citedreferenceThompson A. K., and Fisher S. K. ( 1990 ) Relationship between agonist-induced muscarinic receptor loss and desensitization of stimulated phosphoinositide turnover in two neuroblastomas: methodological considerations. J. Pharmacol. Exp. Ther. 252, 744 – 752.en_US
dc.identifier.citedreferenceWatson M., Yamamura H. I., and Roeske W. R. ( 1983 ) A unique regulatory profile and regional distribution of [ 3 H]pirenzepine binding in the rat provide evidence for distinct Ml and M2 muscarinic receptor subtypes. Life Sci. 32, 3001 – 3011.en_US
dc.identifier.citedreferenceWilson K. M., and Minneman K. P. ( 1990a ) Pertussis toxin inhibits norepinephrine-stimulated inositol phosphate formation in primary brain cell cultures. Mol. Pharmacol. 38, 274 – 281.en_US
dc.identifier.citedreferenceWilson K. M., and Minneman K. P. ( 1990 ) Different pathways of [ 3 H]inositol phosphate formation mediated by Α 1a -and Α 1b -adrenergic receptors. J. Biol. Chem. 265, 17601 – 17606.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.