Show simple item record

Deafness-related plasticity in the inferior colliculus: gene expression profiling following removal of peripheral activity

dc.contributor.authorHolt, Avril Geneneen_US
dc.contributor.authorAsako, Mikiyaen_US
dc.contributor.authorLomax, Catherine A.en_US
dc.contributor.authorMacDonald, James W.en_US
dc.contributor.authorTong, Lingen_US
dc.contributor.authorLomax, Margaret I.en_US
dc.contributor.authorAltschuler, Richard A.en_US
dc.date.accessioned2010-04-01T15:37:12Z
dc.date.available2010-04-01T15:37:12Z
dc.date.issued2005-06en_US
dc.identifier.citationHolt, Avril Genene; Asako, Mikiya; Lomax, Catherine A.; MacDonald, James W.; Tong, Ling; Lomax, Margaret I.; Altschuler, Richard A. (2005). "Deafness-related plasticity in the inferior colliculus: gene expression profiling following removal of peripheral activity." Journal of Neurochemistry 93(5): 1069-1086. <http://hdl.handle.net/2027.42/66107>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66107
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15934929&dopt=citationen_US
dc.description.abstractThe inferior colliculus (IC) is a major center of integration in the ascending as well as descending auditory pathways, where both excitatory and inhibitory amino acid neurotransmitters play a key role. When normal input to the auditory system is decreased, the balance between excitation and inhibition in the IC is disturbed. We examined global changes in gene expression in the rat IC 3 and 21 days following bilateral deafening, using Affymetrix GeneChip arrays and focused our analysis on changes in expression of neurotransmission-related genes. Over 1400 probe sets in the Affymetrix Rat Genome U34A Array were identified as genes that were differentially expressed. These genes encoded proteins previously reported to change as a consequence of deafness, such as calbindin, as well as proteins not previously reported to be modulated by deafness, such as clathrin. A subset of 19 differentially expressed genes was further examined using quantitative RT–PCR at 3, 21 and 90 days following deafness. These included several GABA, glycine, glutamate receptor and neuropeptide-related genes. Expression of genes for GABA-A receptor subunits β2, β3, and γ2, plus ionotropic glutamate receptor subunits AMPA 2, AMPA 3, and kainate 2, increased at all three times. Expression of glycine receptor α1 initially declined and then later increased, while α2 increased sharply at 21 days. Glycine receptor α3 increased between 3 and 21 days, but decreased at 90 days. Of the neuropeptide-related genes tested with qRT–PCR, tyrosine hydroxylase decreased approximately 50% at all times tested. Serotonin receptor 2C increased at 3, 21, and 90 days. The 5B serotonin receptor decreased at 3 and 21 days and returned to normal by 90 days. Of the genes tested with qRT–PCR, only glycine receptor α2 and serotonin receptor 5B returned to normal levels of expression at 90 days. Changes in GABA receptor β3, GABA receptor γ2, glutamate receptor 2/3, enkephalin, and tyrosine hydroxylase were further confirmed using immunocytochemistry.en_US
dc.format.extent681545 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 International Society for Neurochemistryen_US
dc.subject.otherauditory brainstemen_US
dc.subject.otherimmunocytochemistryen_US
dc.subject.othermicroarrayen_US
dc.subject.otherneurotransmitteren_US
dc.subject.otherRT–PCRen_US
dc.titleDeafness-related plasticity in the inferior colliculus: gene expression profiling following removal of peripheral activityen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Kresge Hearing Research Institute, Department of Otolaryngology/Head Neck Surgery, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationum† University of Michigan Comprehensive Cancer Center Microarray Coreen_US
dc.contributor.affiliationum§ Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother† Department of Otolaryngology/Head Neck Surgery, Kansai Medical University, Osaka, Japanen_US
dc.identifier.pmid15934929en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66107/1/j.1471-4159.2005.03090.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2005.03090.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAkins P. T., Liu P. K. and Hsu C. Y. ( 1996 ) Immediate early gene expression in response to cerebral ischemia. Friend or foe? Stroke 27, 1682 – 1687.en_US
dc.identifier.citedreferenceAraki S., Kawano A., Seldon L., Shepherd R. K., Funasaka S. and Clark G. M. ( 1998 ) Effects of chronic electrical stimulation on spiral ganglion neuron survival and size in deafened kittens. Laryngoscope 108, 687 – 695.en_US
dc.identifier.citedreferenceBillings P. B., Keithley E. M. and Harris J. P. ( 1995 ) Evidence linking the 68-kilodalton antigen identified in progressive sensorineural hearing loss patient sera with heat shock protein 70. Ann. Otol. Rhinol. Laryngol. 104, 181 – 188.en_US
dc.identifier.citedreferenceBlamey P. J., Pyman B. C., Gordon M., Clark G. M., Brown A. M., Dowell R. C. and Hollow R. D. ( 1992 ) Factors predicting postoperative sentence scores in postlinguistically deaf adult cochlear implant patients. Ann. Otol. Rhinol. Laryngol. 101, 342 – 348.en_US
dc.identifier.citedreferenceBlanpied T. A., Scott D. B. and Ehlers M. D. ( 2003 ) Age-related regulation of dendritic endocytosis associated with altered clathrin dynamics. Neurobiol. Aging 24, 1095 – 1104.en_US
dc.identifier.citedreferenceBledsoe S. C. Jr, Nagase S., Miller J. M. and Altschuler R. A. ( 1995 ) Deafness-induced plasticity in the mature central auditory system. Neuroreport 7, 225 – 229.en_US
dc.identifier.citedreferenceBobanovic L. K., Royle S. J. and Murrell-Lagnado R. D. ( 2002 ) P2X receptor trafficking in neurons is subunit specific. J. Neurosci. 22, 4814 – 4824.en_US
dc.identifier.citedreferenceCai X., Flores-Hernandez J., Feng J. and Yan Z. ( 2002 ) Activity-dependent bidirectional regulation of GABA(A) receptor channels by the 5-HT(4) receptor mediated signalling in rat prefrontal cortical pyramidal neurons. J. Physiol. 540 ( pt 3 ): 743 – 759.en_US
dc.identifier.citedreferenceCaraiscos V. B., Mihic S. J., MacDonald J. F. and Orser B. A. ( 2002 ) Tyrosine kinases enhance the function of glycine receptors in rat hippocampal neurons and human α(1)β glycine receptors. J. Physiol. 539, 495 – 502.en_US
dc.identifier.citedreferenceCarvelli L., Moron J. A., Kahlig K. M. et al. ( 2002 ) PI 3-kinase regulation of dopamine uptake. J. Neurochem. 81, 859 – 869.en_US
dc.identifier.citedreferenceCaspary D. M., Milbrandt J. C. and Helfert R. H. ( 1995 ) Central auditory aging: GABA changes in the inferior colliculus. Exp. Gerontol. 30, 349 – 360.en_US
dc.identifier.citedreferenceDodson H. C., Bannister L. H. and Douek E. E. ( 1994 ) Effects of unilateral deafening on the cochlear nucleus of the guinea pig at different ages. Brain Res. Dev. Brain Res. 80, 261 – 267.en_US
dc.identifier.citedreferenceEdmonds J. L. Jr, Hoover L. A. and Durham D. ( 1999 ) Breed differences in deafferentation-induced neuronal cell death and shrinkage in chick cochlear nucleus. Hear. Res. 127, 62 – 76.en_US
dc.identifier.citedreferenceGantz B. J., Woodworth G. G., Knutson J. F., Abbas P. J. and Tyler R. S. ( 1993 ) Multivariate predictors of audiological success with multichannel cochlear implants. Ann. Otol. Rhinol. Laryngol. 102, 909 – 916.en_US
dc.identifier.citedreferenceGarcia M. M., Edward R., Brennan G. B. and Harlan R. E. ( 2000 ) Deafferentation-induced changes in protein kinase C expression in the rat cochlear nucleus. Hear. Res. 147, 113 – 124.en_US
dc.identifier.citedreferencevon Hehn C. A., Bhattacharjee A. and Kaczmarek L. K. ( 2004 ) Loss of Kv3.1 tonotopicity and alterations in cAMP response element-binding protein signaling in central auditory neurons of hearing impaired mice. J. Neurosci. 24, 1936 – 1940.en_US
dc.identifier.citedreferenceHuchton D. M., Pongstaporn T., Niparko J. K. and Ryugo D. K. ( 1997 ) Ultrastructural changes in primary endings of deaf white cats. Otolaryngol. Head Neck Surg. 116, 286 – 293.en_US
dc.identifier.citedreferenceIlling R. B. ( 2001 ) Activity-dependent plasticity in the adult auditory brainstem. Audiol. Neurootol. 6, 319 – 345.en_US
dc.identifier.citedreferenceIlling R. B. and Michler S. A. ( 2001 ) Modulation of P-CREB and expression of c-fos in cochlear nucleus and superior olive following electrical intracochlear stimulation. Neuroreport 12, 875 – 878.en_US
dc.identifier.citedreferenceIlling R. B., Cao Q. L., Forster C. R. and Laszig R. ( 1999 ) Auditory brainstem: development and plasticity of GAP-43 mRNA expression in the rat. J. Comp. Neurol. 412, 353 – 372.en_US
dc.identifier.citedreferenceIrizarry R. A., Bolstad B. M., Collin F., Cope L. M., Hobbs B. and Speed T. P. ( 2003a ) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15.en_US
dc.identifier.citedreferenceIrizarry R. A., Hobbs B., Collin F., Beazer-Barclay Y. D., Antonellis K. J., Scherf U. and Speed T. P. ( 2003b ) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249 – 264.en_US
dc.identifier.citedreferenceJulius D. ( 1991 ) Molecular biology of serotonin receptors. Annu. Rev. Neurosci. 14, 335 – 360.en_US
dc.identifier.citedreferenceKazee A. M., Han L. Y., Spongr V. P., Walton J. P., Salvi R. J. and Flood D. G. ( 1995 ) Synaptic loss in the central nucleus of the inferior colliculus correlates with sensorineural hearing loss in the C57BL/6 mouse model of presbycusis. Hear. Res. 89, 109 – 120.en_US
dc.identifier.citedreferenceKileny P. R., Zimmerman-Phillips S., Kemink J. L. and Schmaltz S. P. ( 1991 ) Effects of preoperative electrical stimulability and historical factors on performance with multichannel cochlear implant. Ann. Otol. Rhinol. Laryngol. 100, 563 – 568.en_US
dc.identifier.citedreferenceKittler J. T. and Moss S. J. ( 2003 ) Modulation of GABAA receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic inhibition. Curr. Opin. Neurobiol. 13, 341 – 347.en_US
dc.identifier.citedreferenceKittler J. T., McAinsh K. and Moss S. J. ( 2002 ) Mechanisms of GABAA receptor assembly and trafficking: implications for the modulation of inhibitory neurotransmission. Mol. Neurobiol. 26, 251 – 268.en_US
dc.identifier.citedreferenceKnapp A. G. and Dowling J. E. ( 1987 ) Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells. Nature 325, 437 – 439.en_US
dc.identifier.citedreferenceKojic L., Dyck R. H., Gu Q., Douglas R. M., Matsubara J. and Cynader M. S. ( 2000 ) Columnar distribution of serotonin-dependent plasticity within kitten striate cortex. Proc. Natl Acad. Sci. USA 97, 1841 – 1844.en_US
dc.identifier.citedreferenceKolaj and Randic ( 1996 ) mu-Opioid receptor-mediated reduction of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-activated current in dorsal horn neurons. Neurosci. Lett. 204 ( 1–2 ): 133 – 137.en_US
dc.identifier.citedreferenceKotak V. C. and Sanes D. H. ( 2002 ) Postsynaptic kinase signaling underlies inhibitory synaptic plasticity in the lateral superior olive. J. Neurobiol. 53, 36 – 43.en_US
dc.identifier.citedreferenceKungel M., Piechotta K., Rietzel H. J. and Friauf E. ( 1997 ) Influence of the neuropeptide somatostatin on the development of dendritic morphology: a cysteamine-depletion study in the rat auditory brainstem. Brain Res. Dev. Brain Res. 101, 107 – 114.en_US
dc.identifier.citedreferenceLee D. J., Cahill H. B. and Ryugo D. K. ( 2003 ) Effects of congenital deafness in the cochlear nuclei of Shaker-2 mice: an ultrastructural analysis of synapse morphology in the endbulbs of Held. J. Neurocytol. 32, 229 – 243.en_US
dc.identifier.citedreferenceLee S. H., Liu L., Wang Y. T. and Sheng M. ( 2002 ) Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36, 661 – 674.en_US
dc.identifier.citedreferenceLegendre P. ( 2001 ) The glycinergic inhibitory synapse. Cell Mol. Life Sci. 58, 760 – 793.en_US
dc.identifier.citedreferenceLesperance M. M., Helfert R. H. and Altschuler R. A. ( 1995 ) Deafness induced cell size changes in rostral AVCN of the guinea pig. Hear. Res. 86, 77 – 81.en_US
dc.identifier.citedreferenceLi Q. H., Nakadate K., Tanaka-Nakadate S., Nakatsuka D., Cui Y. and Watanabe Y. ( 2004 ) Unique expression patterns of 5-HT2A and 5-HT2C receptors in the rat brain during postnatal development: Western blot and immunohistochemical analyses. J. Comp. Neurol. 469, 128 – 140.en_US
dc.identifier.citedreferenceLi W., Kaczmarek L. K. and Perney T. M. ( 2001 ) Localization of two high-threshold potassium channel subunits in the rat central auditory system. J. Comp. Neurol. 437, 196 – 218.en_US
dc.identifier.citedreferenceLivak K. J. and Schmittgen T. D. ( 2001 ) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods 25, 402 – 408.en_US
dc.identifier.citedreferenceLustig L. R., Leake P. A., Snyder R. L. and Rebscher S. J. ( 1994 ) Changes in the cat cochlear nucleus following neonatal deafening and chronic intracochlear electrical stimulation. Hear. Res. 74, 29 – 37.en_US
dc.identifier.citedreferenceMalinow R., Mainen Z. F. and Hayashi Y. ( 2000 ) LTP mechanisms: from silence to four-lane traffic. Curr. Opin. Neurobiol. 10, 352 – 357.en_US
dc.identifier.citedreferenceMangin J. M., Guyon A., Eugene D., Paupardin-Tritsch D. and Legendre P. ( 2002 ) Functional glycine receptor maturation in the absence of glycinergic input in dopaminergic neurones of the rat substantia nigra. J. Physiol. 542, 685 – 697.en_US
dc.identifier.citedreferenceMhatre A. N., Li J., Chen A. F., Yost C. S., Smith R. J., Kindler C. H. and Lalwani A. K. ( 2004 ) Genomic structure, cochlear expression, and mutation screening of KCNK6, a candidate gene for DFNA4. J. Neurosci. Res. 75, 25 – 31.en_US
dc.identifier.citedreferenceMichler S. A. and Illing R. B. ( 2003 ) Molecular plasticity in the rat auditory brainstem: modulation of expression and distribution of phosphoserine, phospho-CREB and TrkB after noise trauma. Audiol. Neurootol. 8, 190 – 206.en_US
dc.identifier.citedreferenceMilbrandt J. C., Holder T. M., Wilson M. C., Salvi R. J. and Caspary D. M. ( 2000 ) GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear. Res. 147, 251 – 260.en_US
dc.identifier.citedreferenceMoller A. R. ( 2005 ) Anatomical and Physiological Basis For Neural Plasticity. Neural Plasticity and Disorders of the Nervous System, pp. 1 – 38. New York : Cambridge University Press.en_US
dc.identifier.citedreferenceMoore J. K., Niparko J. K., Perazzo L. M., Miller M. R. and Linthicum F. H. ( 1997 ) Effect of adult-onset deafness on the human central auditory system. Ann. Otol. Rhinol. Laryngol. 106, 385 – 390.en_US
dc.identifier.citedreferenceMossop J. E., Wilson M. J., Caspary D. M. and Moore D. R. ( 2000 ) Down-regulation of inhibition following unilateral deafening. Hear. Res. 147, 183 – 187.en_US
dc.identifier.citedreferenceMyers M. W., Quirk W. S., Rizk S. S., Miller J. M. and Altschuler R. A. ( 1992 ) Expression of the major mammalian stress protein in the rat cochlea following transient ischemia. Laryngoscope 102, 981 – 987.en_US
dc.identifier.citedreferenceNiitsu Y., Hamada S., Hamaguchi K., Mikuni M. and Okado N. ( 1995 ) Regulation of synapse density by 5-HT2A receptor agonist and antagonist in the spinal cord of chicken embryo. Neurosci. Lett. 195, 159 – 162.en_US
dc.identifier.citedreferenceNiparko J. K. ( 1999 ) Activity influences on neuronal connectivity within the auditory pathway. Laryngoscope 109, 1721 – 1730.en_US
dc.identifier.citedreferenceNiparko J. K. and Finger P. A. ( 1997 ) Cochlear nucleus cell size changes in the dalmatian: model of congenital deafness. Otolaryngol. Head Neck Surg. 117, 229 – 235.en_US
dc.identifier.citedreferenceNishi M., Houtani T., Noda Y. et al. ( 1997 ) Unrestrained nociceptive response and disregulation of hearing ability in mice lacking the nociceptin/orphaninFQ receptor. EMBO J. 16, 1858 – 1864.en_US
dc.identifier.citedreferenceNishiyama N., Hardie N. A. and Shepherd R. K. ( 2000 ) Neonatal sensorineural hearing loss affects neurone size in cat auditory midbrain. Hear. Res. 140, 18 – 22.en_US
dc.identifier.citedreferenceNiu X., Bogdanovic N. and Canlon B. ( 2004 ) The distribution and the modulation of tyrosine hydroxylase immunoreactivity in the lateral olivocochlear system of the guinea-pig. Neuroscience. 125 (3), 725 – 733.en_US
dc.identifier.citedreferenceOh S. H., Yu W. S., Song B. H., Lim D., Koo J. W., Chang S. O. and Kim C. S. ( 2000 ) Expression of heat shock protein 72 in rat cochlea with cisplatin-induced acute ototoxicity. Acta Otolaryngol. 120, 146 – 150.en_US
dc.identifier.citedreferenceOhlemiller K. K. and Dugan L. L. ( 1999 ) Elevation of reactive oxygen species following ischemia–reperfusion in mouse cochlea observed in vivo. Audiol. Neurootol. 4, 219 – 228.en_US
dc.identifier.citedreferenceOhlemiller K. K., McFadden S. L., Ding D. L., Flood D. G., Reaume A. G., Hoffman E. K., Scott R. W., Wright J. S., Putcha G. V. and Salvi R. J. ( 1999 ) Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol. Neurootol. 4, 237 – 246.en_US
dc.identifier.citedreferenceOkamoto P. M., Gamby C., Wells D., Fallon J. and Vallee R. B. ( 2001 ) Dynamin isoform–specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. J. Biol. Chem. 276, 48 458 – 48 465.en_US
dc.identifier.citedreferencePassafaro M., Piech V. and Sheng M. ( 2001 ) Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4, 917 – 926.en_US
dc.identifier.citedreferencePiechotta K., Weth F., Harvey R. J. and Friauf E. ( 2001 ) Localization of rat glycine receptor α1 and α2 subunit transcripts in the developing auditory brainstem. J. Comp. Neurol. 438, 336 – 352.en_US
dc.identifier.citedreferencePotashner S. J., Suneja S. K. and Benson C. G. ( 2000 ) Altered glycinergic synaptic activities in guinea pig brain stem auditory nuclei after unilateral cochlear ablation. Hear. Res. 147, 125 – 136.en_US
dc.identifier.citedreferenceRajan R., Irvine D. R., Wise L. Z. and Heil P. ( 1993 ) Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J. Comp. Neurol. 338, 17 – 49.en_US
dc.identifier.citedreferenceRaza A., Milbrandt J. C., Arneric S. P. and Caspary D. M. ( 1994 ) Age-related changes in brainstem auditory neurotransmitters: measures of GABA and acetylcholine function. Hear. Res. 77, 221 – 230.en_US
dc.identifier.citedreferenceRobertson D., Harvey A. R. and Cole K. S. ( 1989 ) Postnatal development of the efferent innervation of the rat cochlea. Brain Res. Dev. Brain Res. 47, 197 – 207.en_US
dc.identifier.citedreferenceRussell F. A. and Moore D. R. ( 2002 ) Ultrastructural transynaptic effects of unilateral cochlear ablation in the gerbil medial superior olive. Hear. Res. 173, 43 – 61.en_US
dc.identifier.citedreferenceRyugo D. K., Pongstaporn T., Huchton D. M. and Niparko J. K. ( 1997 ) Ultrastructural analysis of primary endings in deaf white cats: morphologic alterations in endbulbs of Held. J. Comp. Neurol. 385, 230 – 244.en_US
dc.identifier.citedreferenceSato K., Shiraishi S., Nakagawa H., Kuriyama H. and Altschuler R. A. ( 2000 ) Diversity and plasticity in amino acid receptor subunits in the rat auditory brain stem. Hear. Res. 147, 137 – 144.en_US
dc.identifier.citedreferenceSchweizer C., Balsiger S., Bluethmann H., Mansuy I. M., Fritschy J. M., Mohler H. and Luscher B. ( 2003 ) The γ2 subunit of GABA(A) receptors is required for maintenance of receptors at mature synapses. Mol. Cell Neurosci. 24, 442 – 450.en_US
dc.identifier.citedreferenceShi S., Hayashi Y., Esteban J. A. and Malinow R. ( 2001 ) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331 – 343.en_US
dc.identifier.citedreferenceShi X., Ren T. and Nuttall A. L. ( 2002 ) The electrochemical and fluorescence detection of nitric oxide in the cochlea and its increase following loud sound. Hear. Res. 164, 49 – 58.en_US
dc.identifier.citedreferenceSie K. C. and Rubel E. W. ( 1992 ) Rapid changes in protein synthesis and cell size in the cochlear nucleus following eighth nerve activity blockade or cochlea ablation. J. Comp. Neurol. 320, 501 – 508.en_US
dc.identifier.citedreferenceSivaramakrishnan S. and Oliver D. L. ( 2001 ) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J. Neurosci. 21, 2861 – 2877.en_US
dc.identifier.citedreferenceStorey N. M., O'Bryan J. P. and Armstrong D. L. ( 2002 ) Rac and Rho mediate opposing hormonal regulation of the ether-a-go-go-related potassium channel. Curr. Biol. 12, 27 – 33.en_US
dc.identifier.citedreferenceSyka J. ( 2002 ) Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol. Rev. 82, 601 – 636.en_US
dc.identifier.citedreferenceTakahashi T., Momiyama A., Hirai K., Hishinuma F. and Akagi H. ( 1992 ) Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron 9, 1155 – 1161.en_US
dc.identifier.citedreferenceTorregrossa M. M., Isgor C., Folk J. E., Rice K. C., Watson S. J. and Woods J. H. ( 2004 ) The δ-opioid receptor agonist (+)BW373U86 regulates BDNF mRNA expression in rats. Neuropsychopharmacology 29, 649 – 659.en_US
dc.identifier.citedreferenceTusher V. G., Tibshirani R. and Chu G. ( 2001 ) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116 – 5121.en_US
dc.identifier.citedreferenceTzounopoulos T. and Stackman R. ( 2003 ) Enhancing synaptic plasticity and memory: a role for small-conductance Ca(2+)-activated K+ channels. Neuroscientist 9, 434 – 439.en_US
dc.identifier.citedreferenceVale C. and Sanes D. H. ( 2000 ) Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain. J. Neurosci. 20, 1912 – 1921.en_US
dc.identifier.citedreferenceVale C. and Sanes D. H. ( 2002 ) The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. Eur. J. Neurosci. 16, 2394 – 2404.en_US
dc.identifier.citedreferenceVan Campen L. E., Murphy W. J., Franks J. R., Mathias P. I. and Toraason M. A. ( 2002 ) Oxidative DNA damage is associated with intense noise exposure in the rat. Hear. Res. 164, 29 – 38.en_US
dc.identifier.citedreferenceVerstreken M., Claes J. and Van de Heyning P. H. ( 1996 ) Osteogenesis imperfecta and hearing loss. Acta Otorhinolaryngol. Belg. 50, 91 – 98.en_US
dc.identifier.citedreferenceWang J., Salvi R. J. and Powers N. ( 1996 ) Plasticity of response properties of inferior colliculus neurons following acute cochlear damage. J. Neurophysiol. 75, 171 – 183.en_US
dc.identifier.citedreferenceWang X. W., Wang X. J., Song J. S., Chen H. X. and Man Y. H. ( 2002 ) Influence of evoked HSP70 expression on hearing function of the cochlea in guinea pigs. Di Yi Jun Yi Da Xue Xue Bao 22, 922 – 924.en_US
dc.identifier.citedreferenceWillott J. F. and Bross L. S. ( 1996 ) Morphological changes in the anteroventral cochlear nucleus that accompany sensorineural hearing loss in DBA/2J and C57BL/6J mice. Brain Res. Dev. Brain Res. 91, 218 – 226.en_US
dc.identifier.citedreferenceYeom K., Gray J., Nair T. S., Arts H. A., Telian S. A., Disher M. J., El-Kashlan H., Sataloff R. T., Fisher S. G. and Carey T. E. ( 2003 ) Antibodies to HSP-70 in normal donors and autoimmune hearing loss patients. Laryngoscope 113, 1770 – 1776.en_US
dc.identifier.citedreferenceZhang J., Suneja S. K. and Potashner S. J. ( 2004 ) Protein kinase A and calcium/calmodulin-dependent protein kinase II regulate glycine and GABA release in auditory brain stem nuclei. J. Neurosci. Res. 75, 361 – 370.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.