Show simple item record

Measurement of Receptor-Activated Phosphoinositide Turnover in Rat Brain: Nonequivalence of Inositol Phosphate and CDP-Diacylglycerol Formation

dc.contributor.authorHeacock, Anne M.en_US
dc.contributor.authorSeguin, Edward B.en_US
dc.contributor.authorAgranoff, Bernard W.en_US
dc.date.accessioned2010-04-01T15:38:51Z
dc.date.available2010-04-01T15:38:51Z
dc.date.issued1993-03en_US
dc.identifier.citationHeacock, Anne M.; Seguin, Edward B.; Agranoff, Bernard W. (1993). "Measurement of Receptor-Activated Phosphoinositide Turnover in Rat Brain: Nonequivalence of Inositol Phosphate and CDP-Diacylglycerol Formation." Journal of Neurochemistry 60(3): 1087-1092. <http://hdl.handle.net/2027.42/66135>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66135
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=8382261&dopt=citationen_US
dc.description.abstractTwo methods for the measurement of receptor-activated phosphoinositide turnover were evaluated for their degree of correspondence in slices of rat brain; they involved the Li + -dependent accumulations of either [ 3 H]-inositol-labeled inositol phosphates or [ 3 H]cytidine-labeled CDP-diacylglycerol. In contrast to the expectation that the ratio of these two responses would remain approximately constant, varying degrees of correspondence were obtained. The two extremes are exemplified by carbachol, which elicited large increases in both inositol phosphate and CDP-diacylglycerol labeling, and endothelin, which gave a robust inositol phosphate response with little or no accumulation of 3 H-CDP-diacylglycerol. No instance of the presence of the latter response in the absence of 3 H-inositol phosphate accumulation was observed. Measurement of 3 H-CDP-diacylglycerol accumulation thus may add additional insight into the regulation of phosphoinositide turnover and the complex actions of Li + .en_US
dc.format.extent659725 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1993 International Society for Neurochemistryen_US
dc.subject.otherPhosphoinositide Turnoveren_US
dc.subject.otherInositol Phosphateen_US
dc.subject.otherCDP-diacylglycerolen_US
dc.subject.otherRat Brainen_US
dc.titleMeasurement of Receptor-Activated Phosphoinositide Turnover in Rat Brain: Nonequivalence of Inositol Phosphate and CDP-Diacylglycerol Formationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumNeuroscience, Laboratory, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid8382261en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66135/1/j.1471-4159.1993.tb03258.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1993.tb03258.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAgranoff B. W., Bradley R. M., and Brady R. O. ( 1958 ) The enzymatic synthesis of inositol phosphatide. J. Biol. Chem. 233, 1077 – 1083.en_US
dc.identifier.citedreferenceAllison J. H. and Stewart M. A. ( 1971 ) Reduced brain inositol in lithium-treated rats. Nature 233, 267 – 268.en_US
dc.identifier.citedreferenceBaird J. O., Challiss A. J., and Nahorski S. R. ( 1991 ) Role for iono-tropic and metabotropic receptors in quisqualate-stimulated inositol polyphosphate accumulation in rat cerebral cortex. Mol. Pharmacol. 39, 745 – 753.en_US
dc.identifier.citedreferenceBenjamins J. A. and Agranoff B. W. ( 1969 ) Distribution and properties of CDP-diglyceride:inositol transferase from brain. J. Neurochem. 16, 513 – 527.en_US
dc.identifier.citedreferenceBerridge M. J., Downes C. P., and Hanley M. R. ( 1982 ) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587 – 595.en_US
dc.identifier.citedreferenceBerridge M. J., Downes C P., and Hanley M. R. ( 1989 ) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59, 411 – 419.en_US
dc.identifier.citedreferenceDownes C. P. and Stone M. A. ( 1986 ) Lithium-induced reduction in intracellular inositol supply in cholinergically stimulated parotid gland. Biochem. J. 234, 199 – 204.en_US
dc.identifier.citedreferenceEichberg J., Gates J., and Hauser G. ( 1979 ) The mechanism of modification by propranolol of the metabolism of phosphati-dyl-CMP (CDP-diacylglyceroI) and other lipids in the rat pineal gland. Biochim. Biophys. Acta 573, 90 – 106.en_US
dc.identifier.citedreferenceFischl A. S. and Carman G. M. ( 1983 ) Phosphatidylinositol biosynthesis in Saccharomyces cerevisiae: purification and properties of microsome-associated phosphatidylinositol synthase. J. Bacterial 154, 304 – 311.en_US
dc.identifier.citedreferenceFisher S. K., Figueiredo J. C, and Bartus R. T. ( 1984 ) Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine. J. Neurochem. 43, 1171 – 1179.en_US
dc.identifier.citedreferenceFisher S. K., Heacock A. M., and Agranoff B. W. ( 1992 ) Inositol lipids and signal transduction in the nervous system: an update. J. Neurochem. 58, 18 – 38.en_US
dc.identifier.citedreferenceGeiger P. J. and Bessman S. P. ( 1972 ) Protein determination by Lowry's method in the presence of sulfhydryl reagents. Anal. Biochem. 49, 467 – 473.en_US
dc.identifier.citedreferenceGhalayini A. and Eichberg J. ( 1985 ) Purification of phosphatidylinositol synthetase from rat brain by CDP-diacylglycerol affinity chromatography and properties of the purified enzyme. J. Neurochem. 44, 175 – 182.en_US
dc.identifier.citedreferenceGodfrey P. P. ( 1989 ) Potentiation by lithium of CMP-phosphati-date formation in carbachol-stimulated rat cerebral-cortical slices and its reversal by myo-inositol. Biochem. J. 258, 621 – 624.en_US
dc.identifier.citedreferenceGodfrey P. P. and Taghavi Z. ( 1990 ) The effect of non-NMDA antagonists and phorbol esters on excitatory amino acid stimulated inositol phosphate formation in rat cerebral cortex. Neurochem. Int. 16, 65 – 72.en_US
dc.identifier.citedreferenceHauser G. and Eichberg J. ( 1975 ) Identification of cytidine diphos-phate-diglyceride in the pineal gland of the rat and its accumulation in the presence of DL-propranolol. J. Biol. Chem. 250, 105 – 112.en_US
dc.identifier.citedreferenceHeacock A. M., Fisher S. K., and Agranoff B. W. ( 1987 ) Enhanced coupling of neonatal muscarinic receptors in rat brain to phos-phoinositide turnover. J. Neurochem. 48, 1904 – 1911.en_US
dc.identifier.citedreferenceHonorÉ T., Davies S. N., Drejer J., Fletcher E. J., Jacobsen P., Lodge D., and Nielsen F. E. ( 1988 ) Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241, 701 – 703.en_US
dc.identifier.citedreferenceHwang P. M., Bredt D. S., and Snyder S. H. ( 1990 ) Autoradio-graphic imaging of phosphoinositide turnover in the brain. Science 249, 802 – 804.en_US
dc.identifier.citedreferenceImai A. and Gershengorn M. C. ( 1987 ) Independent phosphatidyl-inositol synthesis in pituitary plasma membrane and endoplas-mic reticulum. Nature 325, 726 – 728.en_US
dc.identifier.citedreferenceKanoh H., Yamada K., and Sakane F. ( 1990 ) Diacylglycerol ki-nase: a key modulator of signal transduction. Trends Biochem Sci. 15, 47 – 50.en_US
dc.identifier.citedreferenceKennedy E. D., Challiss R. A. J., Ragan C. I., and Nahorski S. R. ( 1990 ) Reduced inositol polyphosphate accumulation and ino-sitol supply induced by lithium in stimulated cerebral cortex slices. Biochem. J. 267, 781 – 786.en_US
dc.identifier.citedreferenceMount J. N. and Laker M. F. ( 1981 ) Estimation of sugar alcohols by gas-liquid chromatography using a modified acetylation procedure. J. Chromatogr. 226, 191 – 197.en_US
dc.identifier.citedreferenceNicoletti F., ladarola M. J., Wroblewski J. T., and Costa E ( 1986 ) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with Α 1 adrenoreceptors. Proc. Natl. Acad. Sci. USA 83 1931 – 1935.en_US
dc.identifier.citedreferencePaulus H. and Kennedy E. P. ( 1960 ) The enzymatic synthesis of inositol monophosphatide. J. Biol. Ghent. 235, 1303 – 1311.en_US
dc.identifier.citedreferenceRecasens M., Guiramand J., Nourigat A., Sassetti I., and Devillieis G. ( 1988 ) A new quisqualate receptor subtype (sAA 2 ) responsible for the glutamate-induced inositol phosphate formation in rat brain synaptoneurosomes. Neurochem. Int. 13, 463 – 467.en_US
dc.identifier.citedreferenceSchoepp D. D. and Hillman C. C. Jr. ( 1990 ) Developmental and pharmacological characterization of quisqualate, ibotenate, and trans-1-amino-1,3-cyclopentanedicarboxylic acid stimulations of phosphoinositide hydrolysis in rat cortical brain slices. Biogenic Amines 7, 331 – 340.en_US
dc.identifier.citedreferenceSherman W. R., Packman P. M., Laird M. H., and Boshans, R L. ( 1977 ) Measurement of wyo-inositol in single cells and defined areas of the nervous system by selected ion monitoring. Anal Biochem. 78, 119 – 131.en_US
dc.identifier.citedreferenceSherman W. R., Gish B. G., Honchar M. P., and Munsell L. Y. ( 1986 ) Effects of lithium on phosphoinositide metabolism in vivo. Fed. Proc. 45, 2639 – 2646.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.