Show simple item record

Functional responses of plants to elevated atmospheric CO 2 – do photosynthetic and productivity data from FACE experiments support early predictions?

dc.contributor.authorNowak, Robert S.en_US
dc.contributor.authorEllsworth, David S.en_US
dc.contributor.authorSmith, Stanley D.en_US
dc.date.accessioned2010-04-01T15:39:08Z
dc.date.available2010-04-01T15:39:08Z
dc.date.issued2004-05en_US
dc.identifier.citationNowak, Robert S.; Ellsworth, David S.; Smith, Stanley D. (2004). "Functional responses of plants to elevated atmospheric CO 2 – do photosynthetic and productivity data from FACE experiments support early predictions?." New Phytologist 162(2): 253-280. <http://hdl.handle.net/2027.42/66140>en_US
dc.identifier.issn0028-646Xen_US
dc.identifier.issn1469-8137en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66140
dc.description.abstractSummary  1 I.   Introduction  2 II.   Early assessments of [CO 2 ] responses in natural ecosystems   2 III.   Global network of FACE sites   4 IV.   Assimilation and leaf N-content   5 V.   Primary productivity  13 VI.   Response of plant functional types  20 VII.  Conclusions   23 Acknowledgements  24 References   24 Summary Results from 16 free-air CO 2 enrichment (FACE) sites representing four different global vegetation types indicate that only some early predictions of the effects of increasing CO 2 concentration (elevated [CO 2 ]) on plant and ecosystem processes are well supported. Predictions for leaf CO 2 assimilation (A net ) generally fit our understanding of limitations to photosynthesis, and the FACE experiments indicate concurrent enhancement of photosynthesis and of partial downregulation. In addition, most herbaceous species had reduced leaf nitrogen (N)-content under elevated [CO 2 ] and thus only a modest enhancement of A net , whereas most woody species had little change in leaf N with elevated [CO 2 ] but a larger enhancement of A net . Early predictions for primary production are more mixed. Predictions that enhancement of productivity would be greater in drier ecosystems or in drier years has only limited support. Furthermore, differences in productivity enhancements among six plant functional types were not significant. By contrast, increases in productivity enhancements with increased N availability are well supported by the FACE results. Thus, neither a resource-based conceptual model nor a plant functional type conceptual model is exclusively supported by FACE results, but rather both species identity and resource availability are important factors influencing the response of ecosystems to elevated [CO 2 ]. © New Phytologist (2004) doi: 10.1111/j.1469-8137.2004.01033.xen_US
dc.format.extent847411 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© New Phytologist (2004)en_US
dc.subject.otherNet Assimilationen_US
dc.subject.otherPhotosynthetic Downregulationen_US
dc.subject.otherPrimary Productionen_US
dc.subject.otherBogen_US
dc.subject.otherForesten_US
dc.subject.otherGrasslanden_US
dc.subject.otherDeserten_US
dc.subject.otherPlant Functional Typeen_US
dc.titleFunctional responses of plants to elevated atmospheric CO 2 – do photosynthetic and productivity data from FACE experiments support early predictions?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109 USA;en_US
dc.contributor.affiliationotherDepartment of Natural Resources & Environmental Science, University of Nevada–Reno, Reno, NV 89557 USA;en_US
dc.contributor.affiliationotherDepartment of Biological Sciences, University of Nevada–Las Vegas, Las Vegas, NV 89154 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66140/1/j.1469-8137.2004.01033.x.pdf
dc.identifier.doi10.1111/j.1469-8137.2004.01033.xen_US
dc.identifier.sourceNew Phytologisten_US
dc.identifier.citedreferenceAinsworth EA, Davey PA, Hymus GJ, Osborne CP, Rogers A, Blum H, NÖsberger J, Long SP. 2003. Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO 2 Enrichment (FACE). Plant, Cell & Environment 26 : 705 – 714.en_US
dc.identifier.citedreferenceAllen AS, Andrews JA, Finzi AC, Matamala R, Richter DD, Schlesinger WH. 2000. Effects of free-air CO 2 enrichment (FACE) on belowground processes in a Pinus taeda forest. Ecological Applications 10 : 437 – 448.en_US
dc.identifier.citedreferenceAllen LH Jr. 1992. Free-air CO 2 enrichment experiments: an historical overview. Critical Reviews in Plant Sciences 11 : 121 – 134.en_US
dc.identifier.citedreferenceAmthor JS, Koch GW. 1996. Biotic growth factor β: stimulation of terrestrial ecosystem net primary production by elevated atmospheric CO 2. In: Koch GW, Mooney HA, eds. Carbon dioxide and terrestrial ecosystems. San Diego, CA, USA : Academic Press, 399 – 414.en_US
dc.identifier.citedreferenceBacastow R, Keeling CD. 1973. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle. II. Changes from AD 1700–2070 as deduced from a geochemical model. In: Woodwell GM Pecan EV, eds. Carbon and the biosphere. Springfield, VA, USA : US Atomic Energy Commission, National Technical Information Service, 86 – 135.en_US
dc.identifier.citedreferenceBazzaz FA. 1990. The response of natural ecosystems to the rising global CO 2 levels. Annual Review of Ecology and Systematics 21 : 167 – 196.en_US
dc.identifier.citedreferenceBelote RT, Weltzin JF, Norby RJ. 2003. Response of an understory plant community to elevated [CO 2 ] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytologist 161 : 827 – 835.en_US
dc.identifier.citedreferenceBernacchi C, Calfapietra C, Davey PA, Wittig VA, Scarascia-Mugnozza G, Raines CA, Long SP. 2003. Photosynthesis and stomatal conductance responses of poplars to free-air CO 2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytologist 159 : 609 – 621.en_US
dc.identifier.citedreferenceBillings SA, Schaeffer SM, Zitzer S, Charlet T, Smith SD, Evans RD. 2002. Alterations of nitrogen dynamics under elevated carbon dioxide in an intact Mojave Desert ecosystem: evidence from nitrogen-15 natural abundance. Oecologia 131 : 463 – 467.en_US
dc.identifier.citedreferenceBÖhm W. 1979. Methods of studying root systems. Ecological studies 33. Berlin Heidelberg, Germany/New York, NY, USA : Springer.en_US
dc.identifier.citedreferenceBolker BM, Pacala SW, Bazzaz FA, Canham CD, Levin SA. 1995. Species diversity and ecosystem response to carbon dioxide fertilization: conclusions from a temperate forest model. Global Change Biology 1 : 373 – 381.en_US
dc.identifier.citedreferenceByrne C, Jones MB. 2002. Effects of elevated CO 2 and nitrogen fertiliser on biomass productivity, community structure and species diversity of a semi-natural grassland in Ireland. Biology and Environment: Proceedings of the Royal Irish Academy 102B : 141 – 150.en_US
dc.identifier.citedreferencevon Caemmerer S, Ghannoum O, Conroy JP, Clark H, Newton PCD. 2001. Photosynthetic responses of temperate species to free air CO 2 enrichment (FACE) in a grazed New Zealand pasture. Australian Journal of Plant Physiology 28 : 439 – 450.en_US
dc.identifier.citedreferenceCeulemans R, Mousseau M. 1994. Effects of elevated atmospheric CO 2 on woody plants. New Phytologist 127 : 425 – 446.en_US
dc.identifier.citedreferenceColeman JS, Bazzaz FA. 1992. Effects of CO 2 and temperature on growth and resource use of co-occurring C 3 and C 4 annuals. Ecology 73 : 1244 – 1259.en_US
dc.identifier.citedreferenceCraine JM, Reich PB, Tilman D, Ellsworth D, Fargione J, Knops J, Naemm S. 2003. The role of plant species in biomass production and response to elevated CO 2 and N. Ecology Letters 6 : 623 – 630.en_US
dc.identifier.citedreferenceCrous KY, Ellsworth DS. 2004. Canopy position affects photosynthetic adjustments to long-term CO 2 enrichment (FACE) in aging needles in a mature Pinus taeda L. forest. Tree Physiology ( In press.)en_US
dc.identifier.citedreferenceCure JD, Acock B. 1986. Crop responses to carbon dioxide doubling: a literature survey. Agricultural and Forest Meteorology 38 : 127 – 145.en_US
dc.identifier.citedreferenceCurtis PS. 1996. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell & Environment 19 : 127 – 137.en_US
dc.identifier.citedreferenceCurtis PS, Wang XZ. 1998. A meta-analysis of elevated CO 2 effects on woody plant mass, form, and physiology. Oecologia 113 : 299 – 313.en_US
dc.identifier.citedreferenceDaepp M, Suter D, Almeida JPF, Isopp H, Hartwig UA, Frehner M, Blum H, NÖsberger J, LÜscher A. 2000. Yield response of Lolium perenne swards to free air CO 2 enrichment increased over six years in a high N input system on fertile soil. Global Change Biology 6 : 805 – 816.en_US
dc.identifier.citedreferenceDeFalco LA. 2003. Physiological ecology of the invasive annual grass, Bromus madritensis subsp. rubens, and its interaction with native Mojave Desert species. Dissertation. Reno, NV, USA: University of Nevada-Reno.en_US
dc.identifier.citedreferenceDeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR, Schlesinger WH. 1999. Net primary production of a forest ecosystem with experimental CO 2 enrichment. Science 284 : 1177 – 1179.en_US
dc.identifier.citedreferenceDÍaz S, Grime JP, Harris J, McPherson E. 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364 : 616 – 617.en_US
dc.identifier.citedreferenceDrake BG. 1992. A field study of the effects of elevated CO 2 on ecosystem processes in a Chesapeake Bay wetland. Australian Journal of Botany 40 : 579 – 595.en_US
dc.identifier.citedreferenceDrake BG, Leadley PW. 1991. Canopy photosynthesis of crops and native plant communities exposed to long-term elevated CO 2. Plant, Cell & Environment 14 : 853 – 860.en_US
dc.identifier.citedreferenceDukes JS, Mooney HA. 1999. Does global change increase the success of biological invaders? Trends in Ecology and Evolution 14 : 135 – 139.en_US
dc.identifier.citedreferenceEllsworth DS. 2000. Seasonal CO 2 assimilation and stomatal limitations in a Pinus taeda canopy. Tree Physiology 20 : 435 – 445.en_US
dc.identifier.citedreferenceEllsworth DS, Oren R, Huang C, Phillips N, Hendrey GR. 1995. Leaf and canopy responses to elevated CO 2 in a pine forest under free-air CO 2 enrichment. Oecologia 104 : 139 – 146.en_US
dc.identifier.citedreferenceEvans RD, Rimer R, Sperry L, Belnap J. 2001. Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecological Applications 11 : 1301 – 1310.en_US
dc.identifier.citedreferenceFajer ED, Bowers MD, Bazzaz FA. 1991. Performance and allocation patterns of the perennial herb, Plantago lanceolata, in response to simulated herbivory and elevated CO 2 environments. Oecologia 87 : 37 – 42.en_US
dc.identifier.citedreferenceFajer ED, Bowers MD, Bazzaz FA. 1992. The effect of nutrients and enriched CO 2 environments on production of carbon-based allelochemicals in Plantago : a test of the carbon/nutrient balance hypothesis. American Naturalist 140 : 707 – 723.en_US
dc.identifier.citedreferenceFarnsworth EJ, Bazzaz FA. 1995. Inter- and intra-generic differences in growth, reproduction, and fitness of nine herbaceous annual species grown in elevated CO 2 environments. Oecologia 104 : 454 – 466.en_US
dc.identifier.citedreferenceFarquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta 149 : 78 – 90.en_US
dc.identifier.citedreferenceFernandez G. 2003a. Data mining using SAS applications. Boca Raton, FL, USA : Chapman & Hall / CRC.en_US
dc.identifier.citedreferenceFernandez G. 2003b. QLXQLREPEAT. SAS macro for analyzing two qualitative factors with a repeated measures anova. Reno, NV USA : Department of Applied Economics and Statistics, MS 204. University of Nevada-Reno ( http://www.ag.unr.edu/gf ).en_US
dc.identifier.citedreferenceField CB, Chapin FS III, Matson PA, Mooney HA. 1992. Responses of terrestrial ecosystems to the changing atmosphere: a resource-based approach. Annual Review of Ecology and Systematics 23 : 201 – 235.en_US
dc.identifier.citedreferenceFilion M, Dutilleul P, Potvin C. 2000. Optimum experimental design for free-air carbon dioxide enrichment (FACE) studies. Global Change Biology 6 : 843 – 854.en_US
dc.identifier.citedreferenceFinzi AC, DeLucia EH, Hamilton JG, Richter DD, Schlesinger WH. 2002. The nitrogen budget of a pine forest under free air CO 2 enrichment. Oecologia 132 : 567 – 578.en_US
dc.identifier.citedreferenceGarbutt K, Bazzaz FA. 1984. The effects of elevated CO 2 on plants. III. Flower, fruit and seed production and abortion. New Phytologist 98 : 433 – 446.en_US
dc.identifier.citedreferenceGielen B, Calfapietra C, Sabatti M, Ceulemans R. 2001. Leaf area dynamics in a closed poplar plantation under free-air carbon dioxide enrichment. Tree Physiology 21 : 1245 – 1255.en_US
dc.identifier.citedreferenceGriffin KL, Tissue DT, Turnbull MH, Whitehead D. 2000. The onset of photosynthetic acclimation to elevated CO 2 partial pressure in field-grown Pinus radiata D. Don after 4 years. Plant, Cell & Environment 23 : 1089 – 1098.en_US
dc.identifier.citedreferenceGrÜnzweig JM, KÖrner C. 2001. Biodiversity effects of elevated CO 2 in species-rich model communities from the semi-arid Negev of Israel. Oikos 95 : 112 – 124.en_US
dc.identifier.citedreferenceGunderson CA, Sholtis JD, Wullschleger SD, Tissue DT, Hanson PJ, Norby RJ. 2002. Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum ( Liquidambar styraciflua L.) plantation during 3 years of CO 2 enrichment. Plant, Cell & Environment 25 : 379 – 393.en_US
dc.identifier.citedreferenceHamerlynck EP, Huxman TE, Nowak RS, Redar S, Loik ME, Jordan DN, Zitzer SF, Coleman JS, Seemann JR, Smith SD. 2000. Photosynthetic responses of Larrea tridentata to a step-increase in atmospheric CO 2 at the Nevada Desert FACE Facility. Journal of Arid Environments 44 : 425 – 436.en_US
dc.identifier.citedreferenceHanson PJ, McRoberts RE, Isebrands JG, Dixon RK. 1987. An optimal sampling strategy for determining CO 2 exchange-rate as a function of photosynthetic photon flux-density. Photosynthetica 21 : 98 – 101.en_US
dc.identifier.citedreferenceHanson PJ, Todd DE Jr, Amthor JS. 2001. A six-year study of sapling and large-tree growth and mortality responses to natural and induced variability in precipitation and throughfall. Tree Physiology 21 : 345 – 358.en_US
dc.identifier.citedreferenceHÄttenschwiler S, Handa IT, Egli L, Asshoff R, Ammann W, KÖrner C. 2002. Atmospheric CO 2 enrichment of alpine treeline conifers. New Phytologist 156 : 363 – 375.en_US
dc.identifier.citedreferenceHebeisen T, LÜscher A, Zanetti S, Fischer BU, Hartwig UA, Frehner M, Hendrey GR, Blum H, NÖsberger J. 1997. Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO 2 enrichment and management. Global Change Biology 3 : 149 – 160.en_US
dc.identifier.citedreferenceHeijmans MMPD, Berendse F, Arp WJ, Masselink AK, Klees H, de Visser W, van Breemen N. 2001. Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. Journal of Ecology 89 : 268 – 279.en_US
dc.identifier.citedreferenceHendrey GR, Kimball BA. 1994. The FACE program. Agricultural and Forest Meteorology 70 : 3 – 14.en_US
dc.identifier.citedreferenceHendrey GR, Ellsworth DS, Lewin KF, Nagy J. 1999. A free air enrichment system for exposing tall forest vegetation to elevated atmospheric CO 2. Global Change Biology 5 : 293 – 309.en_US
dc.identifier.citedreferenceHerrick JD, Thomas RB. 2001. No photosynthetic down-regulation in sweetgum trees ( Liquidambar styraciflua L.) after three years of CO 2 enrichment at the Duke Forest FACE experiment. Plant, Cell & Environment 24 : 53 – 64.en_US
dc.identifier.citedreferenceHooper DU, Vitousek PM. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277 : 1302 – 1305.en_US
dc.identifier.citedreferenceHoosbeek MR, van Breemen N, Berendse F, Grosvernier P, Vasander H, WallÉn B. 2001. Limited effect of increased atmospheric CO 2 concentration on ombrotrophic bog vegetation. New Phytologist 150 : 459 – 463.en_US
dc.identifier.citedreferenceHoughton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D, eds. 2001. Climate Change 2001. The Scientific basis. Cambridge, UK : Cambridge University Press.en_US
dc.identifier.citedreferenceHousman DC. 2002. Effects of elevated CO 2 on primary productivity in a Mojave Desert ecosystem. Dissertation. Las Vegas, NV, USA: University of Nevada-Las Vegas.en_US
dc.identifier.citedreferenceHuxman TE, Hamerlynck EP, Moore BD, Smith SD, Jordan DN, Zitzer SF, Nowak RS, Coleman JS, Seemann JR. 1998. Photosynthetic down-regulation in Larrea tridentata exposed to elevated atmospheric CO 2 : interaction with drought under glasshouse and field (FACE) exposure. Plant, Cell & Environment 21 : 1153 – 1161.en_US
dc.identifier.citedreferenceIsebrands JG, McDonald EP, Kruger E, Hendrey G, Percy K, Pregitzer K, Sober J, Karnosky DF. 2001. Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone. Environmental Pollution 115 : 359 – 371.en_US
dc.identifier.citedreferenceJablonski LM. 1997. Responses of vegetative and reproductive traits to elevated CO 2 and nitrogen in Raphanus varieties. Canadian Journal of Botany 75 : 533 – 545.en_US
dc.identifier.citedreferenceJasienski M, Bazzaz FA. 1999. The fallacy of ratios and the testability of models in biology. Oikos 84 : 321 – 326.en_US
dc.identifier.citedreferenceJoel G, Chapin FS III, Chiariello NR, Thayer SS, Field CB. 2001. Species-specific responses of plant communities to altered carbon and nutrient availability. Global Change Biology 7 : 435 – 450.en_US
dc.identifier.citedreferenceJones TH, Thompson LJ. 1998. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280 : 441 – 442.en_US
dc.identifier.citedreferenceKeeling CD, Whorf TP. 2002. Atmospheric CO 2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change. Oak Ridge, TN, USA : Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, ( http://cdiac.ornl.gov/trends/co2/sio-mlo.htm ).en_US
dc.identifier.citedreferenceKimball BA. 1983. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agronomy Journal 75 : 779 – 788.en_US
dc.identifier.citedreferenceKimball BA, Kobayashi K, Bindi M. 2002. Responses of agricultural crops to free-air CO 2 enrichment. Advances in Agronomy 77 : 293 – 368.en_US
dc.identifier.citedreferenceKing JS, Pregitzer KS, Zak DR, Sober J, Isebrands JG, Dickson RE, Hendrey GR, Karnosky DF. 2001. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO 2 and tropospheric O 3. Oecologia 128 : 237 – 250.en_US
dc.identifier.citedreferenceKopper BJ, Lindroth RL. 2003. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134 : 95 – 103.en_US
dc.identifier.citedreferenceKÖrner C. 1995. Towards a better experimental basis for upscaling plant responses to elevated CO 2 and climate warming. Plant, Cell & Environment 18 : 1101 – 1110.en_US
dc.identifier.citedreferenceKÖrner C. 2000. Biosphere responses to CO 2 enrichment. Ecological Applications 10 : 1590 – 1619.en_US
dc.identifier.citedreferenceKramer PJ. 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. Bioscience 31 : 29 – 32.en_US
dc.identifier.citedreferenceLeadley PW, Drake BG. 1993. Open top chambers for exposing plant canopies to elevated CO 2 concentration and for measuring net gas exchange. Vegetatio 104/105 : 3 – 15.en_US
dc.identifier.citedreferenceLeadley PW, Niklaus PA, Stocker R, KÖrner Ch. 1997. Screen-aided CO 2 control (SACC): a middle ground between FACE and open-top chambers. Acta Oecologia 18 : 225 – 261.en_US
dc.identifier.citedreferenceLeadley PW, Niklaus PA, Stocker R, KÖrner C. 1999. A field study of the effects of elevated CO 2 on plant biomass and community structure in a calcareous grassland. Oecologia 118 : 39 – 49.en_US
dc.identifier.citedreferenceLee TD, Tjoelker MG, Ellsworth DS, Reich PB. 2001. Photosynthetic acclimatization of 13 prairie grassland species in the field under elevated carbon dioxide and increased nitrogen. New Phytologist 150 : 405 – 418.en_US
dc.identifier.citedreferenceLee TD, Reich PB, Tjoelker MG. 2003. Legume presence increases photosynthesis and N concentrations of co-occurring non-fixers but does not modulate their responsiveness to carbon dioxide enrichment. Oecologia 137 : 22 – 31.en_US
dc.identifier.citedreferenceLeuning R. 1997. Scaling to a common temperature improves the correlation between the photosynthesis parameters J(max) and V-cmax. Journal of Experimental Botany 48 : 345 – 347.en_US
dc.identifier.citedreferenceLewin KF, Hendrey GR, Nagy J, LaMorte RL. 1994. Design and application of a free-air carbon dioxide enrichment facility. Agricultural and Forest Meteorology 70 : 15 – 29.en_US
dc.identifier.citedreferenceLoreau M. 2000. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91 : 3 – 17.en_US
dc.identifier.citedreferenceLuo Y, Mooney HA. 1996. Stimulation of global photosynthetic carbon influx by an increase in atmospheric carbon dioxide concentration. In: Koch GW, Mooney HA, eds. Carbon dioxide and terrestrial ecosystems. San Diego, CA, USA : Academic Press, 381 – 397.en_US
dc.identifier.citedreferenceLuo Y, Reynolds JF. 1999. Validity of extrapolating field CO 2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80 : 1568 – 1583.en_US
dc.identifier.citedreferenceLuo Y, Reynolds JF, Wang Y, Wolfe D. 1999. A search for predictive understanding of plant responses to elevated [CO 2 ]. Global Change Biology 5 : 143 – 156.en_US
dc.identifier.citedreferenceLuomala EM, Laitinen K, KellomÄki S, Vapaavuori E. 2003. Variable photosynthetic acclimation in consecutive cohorts of Scots pine needles during 3 years of growth at elevated CO 2 and elevated temperature. Plant, Cell & Environment 26 : 645 – 660.en_US
dc.identifier.citedreferenceLÜscher A, Hendrey GR, NÖsberger J. 1998. Long-term responsiveness to free air CO 2 enrichment of functional types, species and genotypes of plants from fertile permanent grassland. Oecologia 113 : 37 – 45.en_US
dc.identifier.citedreferenceMatamala R, Schlesinger WH. 2001. Effects of elevated atmospheric CO 2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biology 6 : 967 – 979.en_US
dc.identifier.citedreferenceMcConnaughay KDM, Berntson GM, Bazzaz FA. 1993. Limitations to CO 2 -induced growth enhancement in pot studies. Oecologia 94 : 550 – 557.en_US
dc.identifier.citedreferenceMcLeod AR, Long SP. 1999. Free-air carbon dioxide enrichment (FACE) in global change research: a review. Advances in Ecological Research 28 : – 56.en_US
dc.identifier.citedreferenceMedlyn BE, Badeck F-W, De Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, De Angelis P, Forstreuter M, Jach ME, KellomÄki S, Laitat E, Marek M, Philippot S, Rey A, Strassmeyer J, Laitinen K, Liozon R, Portier B, Roberntz P, Wang K, Jarvis PG. 1999. Effects of elevated [CO 2 ] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment 22 : 1475 – 1495.en_US
dc.identifier.citedreferenceMedlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, KellomÄki S, Laitat E, Rey A, Roberntz P, Sigurdsson BD, Strassmeyer J, Wang K, Curtis PS, Jarvis PG. 2001. Stomatal conductance of forest species after long-term exposure to elevated CO 2 concentration: a synthesis. New Phytologist 149 : 247 – 264.en_US
dc.identifier.citedreferenceMelillo JM, Janetos AC, Karl TR, Barron EJ, Burkett V, Cecich TF, Corell R, Jacobs K, Joyce L, Miller B, Morgan MG, Parson EA, Richels RG, Schimel DS. 2001. Climate change impacts on the United States: the potential consequences of climate variability and change. Cambridge, UK : Cambridge University Press.en_US
dc.identifier.citedreferenceMelillo JM, McGuire AD, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL. 1993. Global climate change and terrestrial net primary production. Nature 363 : 234 – 240.en_US
dc.identifier.citedreferenceMiglietta F, Hoosbeek MR, Foot J, Gigon F, Hassinen A, Heijmans M, Peressotti A, Saarinen T, Van Breemen N, WallÉn B. 2001a. Spatial and temporal performance of a miniFACE (Free Air CO 2 Enrichment) system on bog ecosystems in northern and central Europe. Environmental Monitoring and Assessment 66 : 107 – 127.en_US
dc.identifier.citedreferenceMiglietta F, Peressotti A, Vaccari FP, Zaldei A, De Angelis O, Scarascia-Mugnozza G. 2001b. Free-air CO 2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytologist 150 : 465 – 476.en_US
dc.identifier.citedreferenceMitchell CE, Reich PB, Tilman D, Groth JV. 2003. Effects of elevated CO 2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Global Change Biology 9 : 438 – 451.en_US
dc.identifier.citedreferenceMooney HA, Koch GW. 1994. The impact of rising CO 2 concentrations on the terrestrial biosphere. Ambio 23 : 74 – 76.en_US
dc.identifier.citedreferenceMorgan JA, Mosier AR, Milchunas DG, LeCain DR, Nelson JA, Parton WJ. 2004a. CO 2 enhances productivity, alters species composition, and reduces forage digestibility of shortgrass steppe regetation. Ecological Applications 14 : 208 – 219.en_US
dc.identifier.citedreferenceMorgan JA, Pataki DE, KÖrner C, Clark H, Del Grosso SJ, GrÜnzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert J, Nowak RS, Parton WJ, Polley HW, Shaw MR. 2004b. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO 2. Oecologia ( In press.)en_US
dc.identifier.citedreferenceMorison JIL. 1985. Sensitivity of stomata and water use efficiency to high CO 2. Plant, Cell & Environment 8 : 467 – 474.en_US
dc.identifier.citedreferenceMyers DA, Thomas RB, DeLucia EH. 1999. Photosynthetic capacity of loblolly pine ( Pinus taeda L.) tees during the first year of carbon dioxide enrichment in a forest ecosystem. Plant, Cell & Environment 22 : 473 – 481.en_US
dc.identifier.citedreferenceNaumburg E, Housman DC, Huxman TE, Charlet TN, Loik MI, Smith SD. 2003. Photosynthetic responses of Mojave Desert shrubs to free air CO 2 enrichment are greatest during wet years. Global Change Biology 9 : 276 – 285.en_US
dc.identifier.citedreferenceNeilson RP. 1995. A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications 5 : 362 – 385.en_US
dc.identifier.citedreferenceNiklaus PA, Leadley PW, Schmid B, KÖrner Ch. 2001. A long-term field study on biodiversity–elevated CO 2 interactions in grassland. Ecological Monographs 71 : 341 – 356.en_US
dc.identifier.citedreferenceNiklaus PA, Alphei J, Ebersberger D, Kampichler C, Kandeler E, Tscherko D. 2003. Six years of in situ CO 2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland. Global Change Biology 9 : 585 – 600.en_US
dc.identifier.citedreferenceNoormets A, Sober A, Karnosky DF. 2001. Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen ( Populus tremuloides Michx.) clones exposed to elevated CO 2 and/or O 3. Plant, Cell & Environment 24 : 327 – 336.en_US
dc.identifier.citedreferenceNorby RJ, Wullschleger SD, Gunderson CA. 1996. Tree responses to elevated CO 2 and implications for forests. In: Koch GW, Mooney HA, eds. Carbon dioxide and terrestrial ecosystems. San Diego, CA, USA : Academic Press, – 21.en_US
dc.identifier.citedreferenceNorby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R. 1999. Tree responses to rising CO 2 in field experiments: implications for the future forest. Plant, Cell & Environment 22 : 683 – 714.en_US
dc.identifier.citedreferenceNorby RJ, Kobayashi K, Kimball BA. 2001. Rising CO 2 – future ecosystems. New Phytologist 150 : 215 – 221.en_US
dc.identifier.citedreferenceNorby RJ, Hanson PJ, O'Neill EG, Tschaplinski TJ, Weltzin JF, Hansen RA, Cheng W, Wullschleger SD, Gunderson CA, Edwards NT, Johnson DW. 2002. Net primary productivity of a CO 2 -enriched deciduous forest and the implications for carbon storage. Ecological Applications 12 : 1261 – 1266.en_US
dc.identifier.citedreferenceNowak RS, Jordan DN, DeFalco LA, Wilcox CS, Coleman JS, Seemann JR, Smith SD. 2001. Leaf conductance decreased under free-air CO 2 enrichment (FACE) for three perennials in the Nevada desert. New Phytologist 150 : 449 – 458.en_US
dc.identifier.citedreferenceOllinger SV, Aber JD, Reich PB, Freuder RJ. 2002. Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO 2 and land use history on the carbon dynamics of northern hardwood forests. Global Change Biology 8 : 545 – 562.en_US
dc.identifier.citedreferenceOren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maler C, SchÄfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO 2 -enriched atmosphere. Nature 411 : 469 – 472.en_US
dc.identifier.citedreferenceOwensby CE, Ham JM, Knapp AK, Auen LA. 1999. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO 2. Global Change Biology 5 : 497 – 506.en_US
dc.identifier.citedreferencePearcy RW, BjÖrkman O. 1983. Physiological effects. In: Lemon E, ed. CO 2 and plants: the response of plants to rising levels of atmospheric carbon dioxide. AAAS selected symposium 84. Washington, DC, USA : AAAS, 65 – 105.en_US
dc.identifier.citedreferencePepin S, KÖrner C. 2002. Web-FACE: a new canopy free-air CO 2 enrichment system for tall trees in mature forests. Oecologia 133 : – 9.en_US
dc.identifier.citedreferencePercy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Okanen E, Sober J, Harrington R, Karnosky DF. 2002. Altered performance of forest pests under atmospheres enriched by CO 2 and O 3. Nature 420 : 403 – 407.en_US
dc.identifier.citedreferencePeterson AG, Ball JT, Luo YQ, Field CB, Reich PB, Curtis PS, Griffin KL, Gunderson CA, Norby RJ, Tissue DT, Forstreuter M, Rey A, Vogel CS. 1999. The photosynthesis leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis. Global Change Biology 5 : 331 – 346.en_US
dc.identifier.citedreferencePhillips DL, Tingey DT, Johnson MG, Catricala CE, Hoyman TL. 2002. Effects of elevated CO 2 on fine root dynamics in a Mojave Desert ecosystem: a FACE study. Abstracts, Ecological Society of America 87th annual meeting. Washington, DC, USA: Ecological Society of America, 409.en_US
dc.identifier.citedreferencePinter PJ Jr, Kimball BA, Wall GW, LaMorte RL, Hunsaker DJ, Adamsen FJ, Frumau KFA, Vugts HF, Hendrey GR, Lewin KF, Nagy J, Johnson HB, Wechsung F, Leavitt SW, Thompson TL, Matthias AD, Brooks TJ. 2000. Free-air CO 2 enrichment (FACE): blower effects on wheat canopy microclimate and plant development. Agricultural and Forest Meteorology 103 : 319 – 333.en_US
dc.identifier.citedreferencePoorter H, Navas M-L. 2003. Tansley review : plant growth and competition at elevated CO 2 : on winners, losers and functional groups. New Phytologist 157 : 175 – 198.en_US
dc.identifier.citedreferencePritchard SG, Roger HH, Davis MA, van Santen E, Prior SA, Schlesinger WH. 2001. The influence of elevated atmospheric CO 2 on fine root dynamics in an intact temperate forest. Global Change Biology 7 : 829 – 837.en_US
dc.identifier.citedreferenceReich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD. 1998. Generality of leaf trait relationships: a test across six biomes. Ecology 80 : 1955 – 1969.en_US
dc.identifier.citedreferenceReich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W. 2001a. Plant diversity enhances ecosystem responses to elevated CO 2 and nitrogen deposition. Nature 410 : 809 – 812.en_US
dc.identifier.citedreferenceReich PB, Tilman D, Craine J, Tjoelker MG, Knops J, Wedin D, Naeem S, Bahauddin D, Goth J, Bengston W, Lee TD. 2001b. Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO 2 and N availability regimes? A field test with 16 grassland species. New Phytologist 150 : 435 – 448.en_US
dc.identifier.citedreferenceRogers A, Ellsworth DS. 2002. Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated pCO 2 (FACE). Plant, Cell & Environment 25 : 851 – 858.en_US
dc.identifier.citedreferenceSage RF. 1994. Acclimation of photosynthesis to increasing atmospheric CO 2 : the gas exchange perspective. Photosynthesis Research 39 : 351 – 368.en_US
dc.identifier.citedreferenceSage RF. 1996. Modification of fire disturbance by elevated CO 2. In: KÖrner C, Bazzaz FA, eds. Carbon dioxide, populations, and communities. San Diego, CA, USA : Academic Press, 231 – 249.en_US
dc.identifier.citedreferenceSAS. 2001. SAS system for Windows, v8. 02. Cary, NC, USA : SAS Institute.en_US
dc.identifier.citedreferenceSaxe H, Ellsworth DS, Heath J. 1998. Tree and forest functioning in an enriched CO 2 atmosphere. New Phytologist 139 : 395 – 436.en_US
dc.identifier.citedreferenceSchÄfer KVR, Oren R, Lai C-T, Katul GG. 2002. Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO 2 concentration. Global Change Biology 8 : 895 – 911.en_US
dc.identifier.citedreferenceSchortemeyer M, Hartwig U, Hendrey G, Sadowsky MJ. 1996. Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE). Soil Biology and Biochemistry 28 : 1717 – 1724.en_US
dc.identifier.citedreferenceShaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB. 2002. Grassland responses to global environmental changes suppressed by elevated CO 2. Science 298 : 1987 – 1990.en_US
dc.identifier.citedreferenceSmith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS. 2000. Elevated CO 2 increases productivity and invasive species success in an arid ecosystem. Nature 408 : 79 – 82.en_US
dc.identifier.citedreferenceStitt M, Krapp A. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment 22 : 583 – 621.en_US
dc.identifier.citedreferenceStrain BR. 1987. Direct effects of increasing atmospheric CO 2 on plants and ecosystems. Trends in Ecology and Evolution 2 : 18 – 21.en_US
dc.identifier.citedreferenceStrain BR, Bazzaz FA. 1983. Terrestrial plant communities. In: Lemon E, ed. CO 2 and plants: the response of plants to rising levels of atmospheric carbon dioxide. AAAS Selected Symposium 84. Washington, DC, USA : AAAS, 177 – 222en_US
dc.identifier.citedreferenceTakeuchi Y, Kubiske ME, Isebrands JG, Pregitzer KS, Hendrey G, Karnosky DF. 2001. Photosynthesis, light and nitrogen relationships in a young deciduous forest canopy under open-air CO 2 enrichment. Plant, Cell & Environment 24 : 1257 – 1268.en_US
dc.identifier.citedreferenceTilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277 : 1300 – 1302.en_US
dc.identifier.citedreferenceTissue DT, Megonigal JP, Thomas RB. 1997. Nitrogenase activity and N 2 fixation are stimulated by elevated CO 2 in a tropical N 2 -fixing tree. Oecologia 109 : 28 – 33.en_US
dc.identifier.citedreferenceWand SJE, Midgley GF, Jones MH, Curtis PS. 1999. Responses of wild C 4 and C 3 grass (Poaceae) species to elevated atmospheric CO 2 concentration: a test of current theories and perceptions. Global Change Biology 5 : 723 – 740.en_US
dc.identifier.citedreferenceWatson RT, Zinyowera MC, Moss RH. 1998. The regional impacts of climate change: an assessment of vulnerability. Cambridge, UK : Cambridge University Press.en_US
dc.identifier.citedreferenceWeltzin JF, Belote RT, Sanders NJ. 2003. Biological invaders in a greenhouse world: will elevated CO 2 fuel plant invasions? Frontiers in Ecology and the Environment 1 : 146 – 153.en_US
dc.identifier.citedreferenceWhittaker RH. 1970. Communities and ecosystems. New York, NY, USA : MacMillan.en_US
dc.identifier.citedreferenceWullschleger SD, Norby RJ, Gunderson CA. 1997. Forest trees and their response to atmospheric carbon dioxide enrichment: a compilation of results. In: Advances in carbon dioxide effects research. ASA special publication no. 61. Madison, WI, USA : ASA, 79 – 100.en_US
dc.identifier.citedreferenceYin X. 2002. Responses of leaf nitrogen concentration and specific leaf area to atmospheric CO 2 enrichment: a retrospective analysis. Global Change Biology 8 : 631 – 642.en_US
dc.identifier.citedreferenceZak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL. 1993. Elevated atmospheric CO 2 and feedback between carbon and nitrogen cycles. Plant and Soil 151 : 105 – 117.en_US
dc.identifier.citedreferenceZak DR, Pregitzer KS, King JS, Holmes WE. 2000. Elevated atmospheric CO 2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist 147 : 201 – 222.en_US
dc.identifier.citedreferenceZak DR, Holmes WE, Finzi AC, Norby RJ, Schlesinger WH. 2003. Soil nitrogen cycling under elevated CO 2 : a synthesis of forest FACE experiments. Ecological Applications 13 : 1508 – 1514.en_US
dc.identifier.citedreferenceZavaleta ES. 2001. Influences of climate and atmospheric changes on plant diversity and ecosystem function in a California grassland. PhD Dissertation. Stanford, CA, USA: Stanford University.en_US
dc.identifier.citedreferenceZavaleta ES, Shaw MR, Chiariello NR, Mooney HA, Field CB. 2003. Additive effects of simulated climate changes, elevated CO 2, and nitrogen deposition on grassland diversity. Proceedings of the National Academy of the USA 100 : 7650 – 7654.en_US
dc.identifier.citedreferenceZiska LH. 2003. Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide. Journal of Experimental Botany 54 : 395 – 404.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.