Show simple item record

Directed Walk Designs for Dose-Response Problems with Competing Failure Modes

dc.contributor.authorHardwick, Janisen_US
dc.contributor.authorMeyer, Mary C.en_US
dc.contributor.authorStout, Quentin F.en_US
dc.date.accessioned2010-04-01T15:40:24Z
dc.date.available2010-04-01T15:40:24Z
dc.date.issued2003-06en_US
dc.identifier.citationHardwick, Janis; Meyer, Mary C.; Stout, Quentin F. (2003). "Directed Walk Designs for Dose-Response Problems with Competing Failure Modes." Biometrics 59(2): 229-236. <http://hdl.handle.net/2027.42/66162>en_US
dc.identifier.issn0006-341Xen_US
dc.identifier.issn1541-0420en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66162
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12926707&dopt=citationen_US
dc.description.abstractWe examine adaptive allocation designs for the problem of determining the optimal therapeutic dose for subjects in early-phase clinical trials. A subject can fail due to lack of efficacy or due to a toxic reaction. Successful subjects will have both a positive response and no toxic side effects. Thus, we seek to maximize the product of the nontoxicity and efficacy dose-response curves. We are interested in sampling rules that perform well along several criteria, including the ethical criterion that, as often as possible, experimental subjects be treated at or close to the maximum in question. Statistically, we wish to identify the optimum dose with high probability at the close of the experiment. Here, we propose designs that combine new allocation policies, directed walks, with new smoothed shape-constrained curve-fitting techniques. These are compared with a variety of other curve-fitting techniques and with up-and-down and equal allocation rules.en_US
dc.format.extent172770 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishingen_US
dc.rightsThe International Biometric Society, 2003en_US
dc.subject.otherBayesianen_US
dc.subject.otherConvex-concaveen_US
dc.subject.otherCRMen_US
dc.subject.otherEfficiencyen_US
dc.subject.otherExperimental Designen_US
dc.subject.otherIsotonicen_US
dc.subject.otherNonparametricen_US
dc.subject.otherPhase I/IIen_US
dc.subject.otherRandom Walken_US
dc.subject.otherSequentialen_US
dc.subject.otherUnimodalen_US
dc.titleDirected Walk Designs for Dose-Response Problems with Competing Failure Modesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumEECS Department, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.en_US
dc.contributor.affiliationotherStatistics Department, University of Georgia, Athens, Georgia 30602, U.S.A.en_US
dc.identifier.pmid12926707en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66162/1/1541-0420.00029.pdf
dc.identifier.doi10.1111/1541-0420.00029en_US
dc.identifier.sourceBiometricsen_US
dc.identifier.citedreferenceBryant, J. and Day, R. ( 1995 ). Incorporating toxicity considerations into the design of two-stage phase II clinical trials. Biometrics 51, 1372 – 1383.en_US
dc.identifier.citedreferenceConaway, M. R. and Petroni, G. R. ( 1996 ). Designs for phase II trials allowing for a trade-off between response and toxicity. Biometrics 52, 1375 – 1386.en_US
dc.identifier.citedreferenceGooley, T. A., Martin, P. J., Fisher, L. D., and Pettinger, M. ( 1994 ). Simulation as a design tool for phase I/II clinical trials—An example from bone-marrow transplantation. Controlled Clinical Trials 15, 450 – 462.en_US
dc.identifier.citedreferenceHardwick, J. and Stout, Q. F. ( 2001 ). Optimizing a unimodal response function for binary variables. In Optimum Design 2000, A. Atkinson, B. Bogacka, and A. Zhigljavsky ( eds ), 195 – 210. Dordrecht : Kluwer.en_US
dc.identifier.citedreferenceHardwick, J., Oehmke, R., and Stout, Q. F. ( 2001 ). Optimal adaptive designs for delayed response models: Exponential case. In MODA 6: Advances in Model Oriented Design and Analysis, A. Atkinson, P. Hackl, and W. MÜeller ( eds ), 127 – 134. Heidelberg : Physica Verlag.en_US
dc.identifier.citedreferenceJennison, C. and Turnbull, B. ( 1993 ). Group sequential tests for bivariate response—Interim analyses of clinical-trials with both efficacy and safety end-points. Biometrics 49, 741 – 752.en_US
dc.identifier.citedreferenceKpamegan, E. E. and Flournoy, N. ( 2001 ). An optimizing up-and-down design. In Optimum Design 2000, A. Atkinson, B. Bogacka, and A. Zhigljavsky ( eds ), 211 – 224. Dordrecht : Kluwer.en_US
dc.identifier.citedreferenceLi, Y., Durham, S., and Flournoy, N. ( 1995 ). An adaptive design for maximization of a contingent binary response. In Adaptive Designs, B. Rosenberger and N. Flournoy ( eds ), Institute of Mathematical Statistics Lecture Notes 25, 179 – 196.en_US
dc.identifier.citedreferenceMeyer, M. ( 1999 ). A comparison of nonparametric shape constrained bioassay estimators. Statistics and Probability Letters 42, 267 – 274.en_US
dc.identifier.citedreferenceMeyer, M. and Laud, P. ( 2002 ). Predictive variable selection in generalized linear models. Journal of the American Statistical Association 97, 859 – 871.en_US
dc.identifier.citedreferenceMurtaugh, P. A. and Fisher, L. D. ( 1990 ). Bivariate binary models of efficacy and toxicity in dose-ranging trials. Communications in Statistics—Theory and Methods 19, 2003 – 2020.en_US
dc.identifier.citedreferenceO'Quigley, J., Pepe, M., and Fisher, L. ( 1990 ). Continual reassessment method: A practical design for phase I clinical trials in cancer. Biometrics 46, 33 – 48.en_US
dc.identifier.citedreferenceO'Quigley, J., Hughes, M., and Fenton, T. ( 2001 ). Dose-finding designs for HIV studies. Biometrics 57, 1018 – 1029.en_US
dc.identifier.citedreferenceThall, P. F. and Russell, K. E. ( 1998 ). A strategy for dose-finding and safety monitoring based on efficacy and adverse outcomes in phase I/II clinical trials. Biometrics 54, 251 – 264.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.