Show simple item record

IPF, a vesicular uptake inhibitory protein factor, can reduce the Ca 2+ -dependent, evoked release of glutamate, GABA and serotonin

dc.contributor.authorTamura, Yutakaen_US
dc.contributor.authorÖzkan, Eric D.en_US
dc.contributor.authorBole, David G.en_US
dc.contributor.authorUeda, Tetsufumien_US
dc.date.accessioned2010-04-01T15:41:23Z
dc.date.available2010-04-01T15:41:23Z
dc.date.issued2001-02en_US
dc.identifier.citationTamura, Yutaka; Özkan, Eric D.; Bole, David G.; Ueda, Tetsufumi (2001). "IPF, a vesicular uptake inhibitory protein factor, can reduce the Ca 2+ -dependent, evoked release of glutamate, GABA and serotonin." Journal of Neurochemistry 76(4): 1153-1164. <http://hdl.handle.net/2027.42/66179>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66179
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11181835&dopt=citationen_US
dc.format.extent813273 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rightsInternational Society for Neurochemistryen_US
dc.subject.otherExocytosisen_US
dc.subject.otherNeurotransmitteren_US
dc.subject.otherQuantal Sizeen_US
dc.subject.otherRegulationen_US
dc.subject.otherVesicular Storageen_US
dc.titleIPF, a vesicular uptake inhibitory protein factor, can reduce the Ca 2+ -dependent, evoked release of glutamate, GABA and serotoninen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Psychiatry, Medical School, The University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Mental Health Research Institute and Departments ofen_US
dc.contributor.affiliationother† Pharmacology anden_US
dc.identifier.pmid11181835en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66179/1/j.1471-4159.2001.00120.x.pdf
dc.identifier.doi10.1046/j.1471-4159.2001.00120.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAugustine G. J. ( 1990 ) Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. J. Physiol. 431, 343 – 364.en_US
dc.identifier.citedreferenceBarrie A. P. & Nicholls D. G. ( 1993 ) Adenosine A 1 receptor inhibition of glutamate exocytosis and protein kinase C-mediated decoupling. J. Neurochem. 60, 1081 – 1086.en_US
dc.identifier.citedreferenceBaskys A. & Malenka R. C. ( 1991 ) Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J. Physiol. 444, 687 – 701.en_US
dc.identifier.citedreferenceBekkers J. M., Richerson G. B. & Stevens C. F. ( 1990 ) Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices. Proc. Natl Acad. Sci. USA 87, 5359 – 5362.en_US
dc.identifier.citedreferenceBellocchio E. E., Reimer R. J., Fremeau R. T. Jr & Edwards R. H. ( 2000 ) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957 – 960.en_US
dc.identifier.citedreferenceBennett V., Baines A. J. & Davis J. ( 1986 ) Purification of brain analogs of red blood cell membrane skeletal proteins: ankyrin, protein 4.1 (synapsin), spectrin, and spectrin subunits. Meth.  Enzymol. 134, 55 – 69.en_US
dc.identifier.citedreferenceBittner M. A. & Holz R. W. ( 1992 ) Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J. Biol. Chem. 267, 16219 – 16225.en_US
dc.identifier.citedreferenceBliss T. V. P. & Collingridge G. L. ( 1993 ) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31 – 39.en_US
dc.identifier.citedreferenceBouron A. & Reuter H. ( 1996 ) A role of intracellular Na + in the regulation of synaptic transmission and turnover of the vesicular pool in cultured hippocampal cells. Neuron 17, 969 – 978.en_US
dc.identifier.citedreferenceBradford H. F. ( 1995 ) Glutamate, GABA and epilepsy. Prog. Neurobiol. 47, 477 – 511.en_US
dc.identifier.citedreferenceBrailoiu E. & Van der Kloot W. ( 1996 ) Bromoacetylcholine and acetylcholinesterase introduced via liposomes into motor nerve endings block increases in quantal size. Pflugers Arch. – Eur. J. Physiol. 432, 413 – 418.en_US
dc.identifier.citedreferenceBruns D. & Jahn R. ( 1995 ) Real-time measurement of transmitter release from single synaptic vesicles. Nature 377, 62 – 65.en_US
dc.identifier.citedreferenceBunney B. G., Bunney W. E. Jr & Carlsson A. ( 1995 ) Schizophrenia and glutamate, in Psychopharmacology: the fourth generation of progress ( Bloom F. E. and Kupfer D. J., eds), pp. 1205 – 1214. Raven Press, New York.en_US
dc.identifier.citedreferenceBurger P. M., Mehl E., Cameron P. L., Maycox P. R., Baumert M., Lottspeich F., De Camilli P. & Jahn R. ( 1989 ) Synaptic vesicles immuno-isolated from rat cerebral cortex contain high levels of glutamate. Neuron 3, 715 – 720.en_US
dc.identifier.citedreferenceCalvert R., Bennett P. & Grazer W. ( 1980 ) Properties and structural role of the subunits of human spectrin. Eur. J. Biochem. 107, 355 – 361.en_US
dc.identifier.citedreferenceCapogna M., Gahwiler B. H. & Thompson S. M. ( 1996 ) Presynaptic inhibition of calcium-dependent and-independent release elicited with ionomycin, gadolinium, and α-latrotoxin in the hippocampus. J. Neurophysiol. 75, 2017 – 2028.en_US
dc.identifier.citedreferenceCarlson M. D., Kish P. E. & Ueda T. ( 1989 ) Solubilization of the ATP-dependent vesicular glutamate uptake system and its reconstitution into liposomes. J. Biol. Chem. 264, 7369 – 7376.en_US
dc.identifier.citedreferenceChapman A. G. ( 1998 ) Glutamate receptors in epilepsy. Prog. Brain Res. 116, 371 – 383.en_US
dc.identifier.citedreferenceChavez-Noriega L. E. & Stevens C. F. ( 1994 ) Increased transmitter release at excitatory synapses produced by direct activation of adenylate cyclase in rat hippocampal slices. J. Neurosci. 14, 310 – 317.en_US
dc.identifier.citedreferenceChoi D. W. & Rothman S. M. ( 1990 ) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Ann. Rev. Neurosci. 13, 171 – 182.en_US
dc.identifier.citedreferenceCidon S. & Sihra T. S. ( 1989 ) Characterization of a H + -ATPase in rat brain synaptic vesicles. J. Biol. Chem. 264, 8281 – 8288.en_US
dc.identifier.citedreferenceCollingridge G. L. & Bliss T. V. P. ( 1987 ) NMDA receptors – their role in long-term potentiation. Trends Neurosci. 10, 288 – 293.en_US
dc.identifier.citedreferenceColmers W. F. & Bleakman D. ( 1994 ) Effects of neuropeptide Y on the electrical properties of neurons. Trends Neurosci. 17, 373 – 379.en_US
dc.identifier.citedreferenceCotman C. W., Monaghan D. T., Ottersen O. P. & Storm-Mathisen J. ( 1987 ) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci. 10, 273 – 279.en_US
dc.identifier.citedreferenceCotman C. W., Monaghan D. T. & Ganong A. H. ( 1988 ) Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Ann. Rev. Neurosci. 11, 61 – 80.en_US
dc.identifier.citedreferenceCoyle J. T. & Puttfarcken P. ( 1993 ) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689 – 695.en_US
dc.identifier.citedreferenceDel Castillo J. & Katz B. ( 1954 ) Quantal components of the end-plate potential. J. Physiol. 124, 560 – 573.en_US
dc.identifier.citedreferenceDittman J. S. & Regehr W. G. ( 1996 ) Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. J. Neurosci. 16, 1623 – 1633.en_US
dc.identifier.citedreferenceDoherty P., Hawgood B. J. & Smith I. C. ( 1984 ) Changes in miniature end-plate potentials after brief nervous stimulation at the frog neuromuscular junction. J. Physiol. 356, 349 – 358.en_US
dc.identifier.citedreferenceDolphin A. C. ( 1990 ) G protein modulation of calcium currents in neurons. Ann. Rev. Physiol. 52, 243 – 255.en_US
dc.identifier.citedreferenceFatt P. & Katz B. ( 1952 ) Spontaneous subthreshold activity at motor nerve endings. J. Physiol. 117, 109 – 128.en_US
dc.identifier.citedreferenceFonnum F. ( 1984 ) Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42, 1 – 11.en_US
dc.identifier.citedreferenceFykse E. M., Christensen H. & Fonnum F. ( 1989 ) Comparison of the properties of γ-aminobutyric acid and l-glutamate uptake into synaptic vesicles isolated from rat brain. J. Neurochem. 52, 946 – 951.en_US
dc.identifier.citedreferenceGleason E., Borges S. & Wilson M. ( 1994 ) Control of neurotransmitter release from retinal amacrine cells by Ca 2+ influx and efflux. Neuron 13, 1109 – 1117.en_US
dc.identifier.citedreferenceGoodman S. R., Zimmer W. E., Clark M. B., Zagon I. S., Barker J. E. & Bloom M. L. ( 1995 ) Brain spectrin: of mice and men. Brain Res. Bull. 36, 593 – 606.en_US
dc.identifier.citedreferenceGreengard P., Valtorta F., Czernik A. J. & Benfenati F. ( 1993 ) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780 – 785.en_US
dc.identifier.citedreferenceHartinger J. & Jahn R. ( 1993 ) An anion binding site that regulates the glutamate transporter of synaptic vesicles. J. Biol. Chem. 268, 23122 – 23127.en_US
dc.identifier.citedreferenceHerrero I., Miras-Portugal M. T. & Sanchez-Prieto J. ( 1992 ) Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature 360, 163 – 166.en_US
dc.identifier.citedreferenceHollmann M. & Heinemann S. ( 1994 ) Cloned glutamate receptors. Ann. Rev. Neurosci. 17, 31 – 108.en_US
dc.identifier.citedreferenceJohnson M. D. & Yee A. G. ( 1995 ) Ultrastructure of electrophysiologically-characterized synapses formed by serotonergic raphe neurons in culture. Neuroscience 67, 609 – 623.en_US
dc.identifier.citedreferenceKandel E. R. & Schwartz J. H. ( 1992 ) Molecular biology of learning: modulation of transmitter release. Science 218, 433 – 443.en_US
dc.identifier.citedreferenceKarinch A. M., Zimmer W. E. & Goodman S. R. ( 1990 ) The identification and sequence of the actin-binding domain of human blood cell β-spectrin. J. Biol. Chem. 265, 11833 – 11840.en_US
dc.identifier.citedreferenceKinney G. A., Emmerson P. J. & Miller R. J. ( 1998 ) Galanin receptor-mediated inhibition of glutamate release in the arcuate nucleus of the hypothalamus. J. Neurosci. 18, 3489 – 3500.en_US
dc.identifier.citedreferenceKish P. E. & Ueda T. ( 1991 ) Calcium-dependent release of accumulated glutamate from synaptic vesicles within permeabilized nerve terminals. Neurosci. Lett. 122, 179 – 182.en_US
dc.identifier.citedreferenceKrueger B. K., Forn J. & Greengard P. ( 1977 ) Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J. Biol. Chem. 252, 2764 – 2773.en_US
dc.identifier.citedreferenceLaemmli U. K. ( 1970 ) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680 – 685.en_US
dc.identifier.citedreferenceLobur A. T., Kish P. E. & Ueda T. ( 1990 ) Synaptic vesicular glutamate uptake: modulation by a synaptosomal cytosolic factor. J. Neurochem. 54, 1614 – 1618.en_US
dc.identifier.citedreferenceMaley B. E., Engle M. G., Humphreys S., Vascik D. A., Howes K. A., Newton B. W. & Elde R. P. ( 1990 ) Monoamine synaptic structure and localization in the central nervous system. J.  Electron Microsc. Technical 15, 20 – 33.en_US
dc.identifier.citedreferenceMalgaroli A. & Tsien R. W. ( 1992 ) Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neuron. Nature 357, 134 – 139.en_US
dc.identifier.citedreferenceMaycox P. R., Deckwerth T., Hell J. W. & Jahn R. ( 1988 ) Glutamate uptake by brain synaptic vesicles. J. Biol. Chem. 263, 15423 – 15428.en_US
dc.identifier.citedreferenceMaycox P. R., Hell J. W. & Jahn R. ( 1990 ) Amino acid neurotransmission: spotlight on synaptic vesicles. Trends Neurosci. 13, 83 – 87.en_US
dc.identifier.citedreferenceMcGehee D. S., Heath M. J. S., Gelber S., Devay P. & Role L. W. ( 1995 ) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269, 1692 – 1696.en_US
dc.identifier.citedreferenceMcMahon H. T. & Nicholls D. G. ( 1991 ) The bioenergetics of neurotransmitter release. Biochim. Biophys. Acta 1059, 243 – 264.en_US
dc.identifier.citedreferenceMehta P. P., Battenberg E. & Wilson M. C. ( 1996 ) SNAP-25 and synaptotagmin involvement in the final Ca ( 2+ )-dependent triggering of neurotransmitter exocytosis. Proc. Natl Acad. Sci. USA 93, 10471 – 10476.en_US
dc.identifier.citedreferenceMeldrum B. ( 1991 ) Excitatory amino acid neurotransmitters in epilepsy. Epilepsia 32, S1 – S3.en_US
dc.identifier.citedreferenceMiller R. J. ( 1990 ) Receptor-mediated regulation of calcium channels and neurotransmitter release. FASEB J. 4, 3291 – 3299.en_US
dc.identifier.citedreferenceMoghaddam B. & Adams B. W. ( 1998 ) Reversal of phencyclidine effects by a group I metabotropic glutamate receptor agonist in rats. Science 281, 1349 – 1352.en_US
dc.identifier.citedreferenceMonaghan D. T., Bridges R. J. & Cotman C. W. ( 1989 ) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Ann. Rev. Pharmacol. Toxicol. 29, 365 – 402.en_US
dc.identifier.citedreferenceMoriyama Y. & Yamamoto A. ( 1995 ) Vesicular l-glutamate transporter in microvesicles from bovine pineal glands: driving force, mechanism of chloride anion activation, and substrate specificity. J. Biol. Chem. 270, 22314 – 22320.en_US
dc.identifier.citedreferenceNaito S. & Ueda T. ( 1983 ) Adenosine triphosphate-dependent uptake of glutamate into synaptic vesicles. J. Biol. Chem. 258, 696 – 699.en_US
dc.identifier.citedreferenceNaito S. & Ueda T. ( 1985 ) Characterization of glutamate uptake into synaptic vesicles. J. Neurochem. 44, 99 – 109.en_US
dc.identifier.citedreferenceNakanishi S. ( 1992 ) Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597 – 603.en_US
dc.identifier.citedreferenceNeher E. & Zucker R. S. ( 1993 ) Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10, 21 – 30.en_US
dc.identifier.citedreferenceNi B., Rostek P. R., Jr, Nadi N. S. & Paul S. M. ( 1994 ) Cloning and expression of a cDNA encoding a brain-specific Na + -dependent inorganic phosphate cotransporter. Proc. Natl Acad. Sci. USA 91, 5607 – 5611.en_US
dc.identifier.citedreferenceNicholls D. G. ( 1989 ) Release of glutamate, aspartate, and γ-aminobutyric acid from isolated nerve terminals. J. Neurochem. 52, 331 – 341.en_US
dc.identifier.citedreferenceNicholls D. G. & Sihra T. S. ( 1986 ) Synaptosomes possess an exocytotic pool of Glutamate. Nature 321, 772 – 773.en_US
dc.identifier.citedreferenceNichols R. A., Wu W. C.-S., Haycock J. W. & Greengard P. ( 1989 ) Introduction of impermeant molecules into synaptosomes using freeze/thaw permeabilization. J. Neurochem. 52, 521 – 529.en_US
dc.identifier.citedreferenceÖzkan E. D. & Ueda T. ( 1998 ) Glutamate transport and storage in synaptic vesicles. Jpn. J. Pharmacol. 77, 1 – 10.en_US
dc.identifier.citedreferenceÖzkan E. D., Lee F. S. & Ueda T. ( 1997 ) A protein factor that inhibits ATP-dependent glutamate and γ-aminobutyric acid accumulation into synapticvesicles: purification and initial characterization. Proc. Natl Acad. Sci. USA 94, 4137 – 4142.en_US
dc.identifier.citedreferencePothos E. N., Davila V. & Sulzer D. ( 1998 ) Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J. Neurosci. 18, 4106 – 4118.en_US
dc.identifier.citedreferencePrince D. A. & Stevens C. F. ( 1992 ) Adenosine decreases neurotransmitter release at central synapses. Proc. Natl Acad. Sci. USA 89, 8586 – 8590.en_US
dc.identifier.citedreferenceRieke F. & Schwartz E. A. ( 1994 ) A cGMP-gated current can control exocytosis at cone synapses. Neuron 13, 863 – 873.en_US
dc.identifier.citedreferenceRobitaille R. & Charlton M. P. ( 1992 ) Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. J. Neurosci. 12, 297 – 305.en_US
dc.identifier.citedreferenceSavchenko A., Barnes S. & Kramer R. H. ( 1997 ) Cyclic nucleotide-gated channels mediate synaptic feedback by nitric oxide. Nature 390, 694 – 698.en_US
dc.identifier.citedreferenceScholz K. P. & Miller R. J. ( 1992 ) Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron 8, 1139 – 1150.en_US
dc.identifier.citedreferenceSilinsky E. M. & Solsona C. S. ( 1992 ) Calcium currents at motor nerve endings: absence of effects of adenosine receptor agonists in the frog. J. Physiol. 457, 315 – 328.en_US
dc.identifier.citedreferenceSladeczek F., Recasens M. & Bochaert J. ( 1988 ) A new mechanism for glutamate receptor action: phosphoinositide hydrolysis. Trends Neurosci. 11, 545 – 549.en_US
dc.identifier.citedreferenceSmith C., Moser T., Xu T. & Neher E. ( 1998 ) Cytosolic Ca 2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron 20, 1243 – 1253.en_US
dc.identifier.citedreferenceStefani A., Pisani A., Mercuri N. B. & Calabresi P. ( 1996 ) The modulation of calcium currents by the activation of mGluRs. Mol.  Neurobiol. 13, 81 – 95.en_US
dc.identifier.citedreferenceStevens C. F. ( 1993 ) Quantal release of neurotransmitter and long-term potentiation. Neuron 10, 55 – 63.en_US
dc.identifier.citedreferenceStorm-Mathisen J., Leknes A. K., Bore A. T., Vaaland J. L., Edminson P., Haug F.-M. S. & Ottersen O. P. ( 1983 ) First visualization of glutamate and GABA in neurons by immunocytochemistry. Nature 301, 517 – 520.en_US
dc.identifier.citedreferenceTabb J. S., Kish P. E., Van Dyke R. & Ueda T. ( 1992 ) Glutamate transport into synaptic vesicles. Roles of membrane potential, pH gradient, and intravesicular pH. J. Biol. Chem. 267, 15412 – 15418.en_US
dc.identifier.citedreferenceTakahashi T., Forsythe I. D., Tsujimoto T., Barnes-Davies M. & Onodera K. ( 1996 ) Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274, 594 – 597.en_US
dc.identifier.citedreferenceTakamori S., Rhee J. S., Rosenmund C. & Jahn R. ( 2000 ) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189 – 194.en_US
dc.identifier.citedreferenceTamura Y., Özkan E. D. & Ueda T. ( 1998 ) The inhibitory protein factor capable of reducing vesicular glutamate accumulation causes a decrease in exocytotic release of glutamate. Soc. Neurosci. Abstract. 24 ( Part 2 ), 1570.en_US
dc.identifier.citedreferenceTrudeau L.-E., Emery D. G. & Haydon P. G. ( 1996 ) Direct modulation of the secretory machinery underlies PKA-dependent synaptic facilitation in hippocampus neurons. Neuron 17, 789 – 797.en_US
dc.identifier.citedreferenceUeda T. ( 1986 ) Glutamate transport in the synaptic vesicle, in Excitatory amino acids ( Roberts P. J. Storm-Mathisen J. and Bradford H. F., eds), pp. 173 – 195. Macmillan, London.en_US
dc.identifier.citedreferenceUeda T., Greengard P., Berzins K., Cohen R. S., Blomberg F., Grab D. J. & Siekevitz P. ( 1979 ) Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cyclic AMP-dependent protein kinase. J. Cell Biol. 83, 308 – 319.en_US
dc.identifier.citedreferenceVan der Kloot W. ( 1991 ) The regulation of quantal size. Prog. Neurobiol. 36, 93 – 130.en_US
dc.identifier.citedreferenceWatkins J. C., Krogsgaard-Larsen P. & Honore T. ( 1990 ) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 11, 25 – 33.en_US
dc.identifier.citedreferenceWhitton P. S., Marshall I. G. & Parsons S. M. ( 1986 ) Reduction of quantal size by vesamicol (AH5183), an inhibitor of vesicular acetylcholine storage. Brain Res. 385, 189 – 192.en_US
dc.identifier.citedreferenceWolosker H., de Souza D. O. & de Meis L. ( 1996 ) Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient. J. Biol. Chem. 271, 11726 – 11731.en_US
dc.identifier.citedreferenceZalutsky R. A. & Nicoll R. A. ( 1990 ) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248, 1619 – 1624.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.