Show simple item record

Transient Hypoxia Alters Striatal Catecholamine Metabolism in Immature Brain: An In Vivo Microdialysis Study

dc.contributor.authorGordon, Kevinen_US
dc.contributor.authorStatman, Danielen_US
dc.contributor.authorJohnston, Michael V.en_US
dc.contributor.authorRobinson, Terry E.en_US
dc.contributor.authorBecker, Jill B.en_US
dc.contributor.authorSilverstein, Faye Sarahen_US
dc.date.accessioned2010-04-01T15:43:40Z
dc.date.available2010-04-01T15:43:40Z
dc.date.issued1990-02en_US
dc.identifier.citationGordon, Kevin; Statman, Daniel; Johnston, Michael V.; Robinson, Terry E.; Becker, Jill B.; Silverstein, Faye S. (1990). "Transient Hypoxia Alters Striatal Catecholamine Metabolism in Immature Brain: An In Vivo Microdialysis Study." Journal of Neurochemistry 54(2): 605-611. <http://hdl.handle.net/2027.42/66218>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66218
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=1688920&dopt=citationen_US
dc.description.abstractMicrodialysis probes were inserted bilaterally into the striatum of 7-day-old rat pups (n = 30) to examine extracellular fluid levels of dopamine, its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). The dialysis samples were assayed by HPLC with electrochemical detection. Baseline levels, measured after a 2-h stabilization period, were as follows: dopamine, not detected; DOPAC, 617 ± 33 fmol/min; HVA, 974 ± 42 fmol/min; and 5-HIAA, 276 ± 15 fmol/min. After a 40-min baseline sampling period, 12 animals were exposed to 8% oxygen for 120 min. Hypoxia produced marked reductions in the striatal extracellular fluid levels of both dopamine metabolites ( p < 0.001 by analysis of variance) and a more gradual and less prominent reduction in 5-HIAA levels ( p < 0.02 by analysis of variance), compared with controls (n = 12) sampled in room air. In the first hour after hypoxia, DOPAC and HVA levels rose quickly, whereas 5-HIAA levels remained suppressed. The magnitude of depolarization-evoked release of dopamine (elicited by infusion of potassium or veratrine through the microdialysis probes for 20 min) was evaluated in control and hypoxic animals. Depolarization-evoked dopamine efflux was considerably higher in hypoxic pups than in controls: hypoxic (n = 7), 257 ± 32 fmol/min; control (n = 12), 75 ± 14 fmol/min ( p < 0.001 by analysis of variance). These data demonstrate that a brief exposure to moderate hypoxia markedly disrupts striatal catecholamine metabolism in the immature rodent brain.en_US
dc.format.extent951310 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1990 International Society for Neurochemistry Ltd.en_US
dc.subject.otherDopamineen_US
dc.subject.otherMicrodialysisen_US
dc.subject.otherStriatumen_US
dc.subject.otherImmature Brainen_US
dc.subject.otherHypoxiaen_US
dc.titleTransient Hypoxia Alters Striatal Catecholamine Metabolism in Immature Brain: An In Vivo Microdialysis Studyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationumDepartment of Neurology, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationumDepartment of Psychology, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid1688920en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66218/1/j.1471-4159.1990.tb01914.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1990.tb01914.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBenveniste H., Drejer J., Schousboe A., and Diemer N. H. ( 1987 ) Regional cerebral glucose phosphorylation and blood flow after insertion of a microdialysis fiber through the dorsal hippocampus in the rat. J. Neurochem. 49, 729 – 734.en_US
dc.identifier.citedreferenceBrannan R., Weinberger J., Knott P., Taff I., Kaufmann H., Togaski D., Nieves-Rosa J., and Maker H. ( 1987 ) Direct evidence of acute massive striatal dopamine release in gerbils with unilateral strokes. Stroke 18, 108 – 110.en_US
dc.identifier.citedreferenceDavis J. N. and Carlsson A. ( 1973 ) The effects of hypoxia on monoamine synthesis, levels, and metabolism in rat brain. J. Neurochem. 21, 783 – 790.en_US
dc.identifier.citedreferenceGlobus M. Y. T., Ginsberg M. D., Dietrich W. D., Busto R., and Scheinberg P. ( 1987 ) Substantia nigra lesion protects against ischemic damage in the striatum. Neurosci. Lett. 80, 251 – 256.en_US
dc.identifier.citedreferenceGlobus M. Y. T., Busto R., Dietrich W. D., Martinez E., Valdes I., and Ginsberg M. D. ( 1989 ) The role of dopamine and glutamate in the development of ischemic neuronal injury in the striatum, in Cerebrovascular Diseases (16th Research [Princeton] Conference on Cerebrovascular Diseases) ( Ginsberg M. D. and Dietrich W. D., eds ), pp. 99 – 107. Raven Press, New York.en_US
dc.identifier.citedreferenceHedner T. and Lundborg P. ( 1979 ) Regional changes in monoamine synthesis in the developing rat brain during hypoxia. Acta Physiol. Scand. 106, 139 – 143.en_US
dc.identifier.citedreferenceHedner T. and Lundborg P. ( 1980 ) Catecholamine metabolism in neonatal rat brain during asphyxia and recovery. Acta Physiol. Scand. 109, 169 – 175.en_US
dc.identifier.citedreferenceIhle W., Gross J., and Moller R. ( 1985 ) Effect of chronic postnatal hypoxia on dopamine uptake by synaptosomes from striatum of adult rats. Biomed. Biochem. Acta 44, 433 – 437.en_US
dc.identifier.citedreferenceLun A., Gross J., Beyer M., Fischer H. D., Wustmann C., Schmidt J., and Hecht K. ( 1986 ) The vulnerable period of perinatal hypoxia with regard to dopamine release and behavior in adult rats. Biomed. Biochem. Acta 45, 619 – 627.en_US
dc.identifier.citedreferenceMiwa S., Fujiwara M., Inoue M., and Fujiwara M. ( 1986 ) Effects of hypoxia on the activities of noradrenergic and dopaminergic neurons in the rat brain. J. Neurochem. 47, 63 – 69.en_US
dc.identifier.citedreferenceRobinson T. and Whishaw I. ( 1988 ) Normalization of extracellular dopamine in striatum following recovery from a partial unilateral 6-OHDA lesion of the substantia nigra: a microdialysis study in freely moving rats. Brain Res. 450, 209 – 224.en_US
dc.identifier.citedreferenceRoth R. H., Murrin L. I., and Walters J. R. ( 1976 ) Central dopaminergic neurons: effect of alterations of impulse flow on the accumulation of dihydroxyphenylacetic acid. Eur. J. Pharmacol. 36, 163 – 171.en_US
dc.identifier.citedreferenceSharp T., Zetterstrom T., and Ungerstedt U. ( 1986 ) An in vivo study of dopamine release and metabolism in rat brain regions using intracerebral dialysis. J. Neurochem. 47, 113 – 122.en_US
dc.identifier.citedreferenceSilverstein F. S. and Johnston M. V. ( 1984 ) Effects of hypoxia-ischemia on monamine metabolism in the immature brain. Ann. Neurol. 15, 342 – 347.en_US
dc.identifier.citedreferenceSilverstein F., Buchanan K., and Johnston M. V. ( 1984 ) Pathogenesis of hypoxic-ischemic brain injury in a perinatal rodent model. Neurosci. Lett. 49, 271 – 277.en_US
dc.identifier.citedreferenceSilverstein F. S., Buchanan K. B., and Johnston M. V. ( 1986 ) Perinatal hypoxia-ischemia disrupts striatal high affinity [ 3 H]glutamate uptake into synaptosomes. J. Neurochem. 47, 1614 – 1619.en_US
dc.identifier.citedreferenceUngerstedt U. ( 1984 ) Measurement of neurotransmitter release by intracranial dialysis, in Measurement of Neurotransmitter Release In Vivo ( Marsden C. A., ed ), pp. 81 – 105. John Wiley and Sons, Chichester.en_US
dc.identifier.citedreferenceVannucci R. C., Lyons D. T., and Vasta F. ( 1988 ) Regional cerebral blood flow during hypoxia-ischemia in immature rats. Stroke 19, 245 – 250.en_US
dc.identifier.citedreferenceWeinberger J. and Cohen G. ( 1983 ) Nerve terminal damage in cerebral ischemia: greater susceptibility of catecholamine nerve terminals relative to serotonin nerve terminals. Stroke 14, 986 – 989.en_US
dc.identifier.citedreferenceWelch K. M. A., Wang T., and Chabi E. ( 1978 ) Ischemia-induced seizures and cortical monoamine levels. Ann. Neurol. 3, 152 – 155.en_US
dc.identifier.citedreferenceWelsh F., Vanucci R., and Brierley J. ( 1982 ) Columnar alterations of NADH fluorescence during hypoxia ischemia in immature rat brain. J. Cereb. Blood Flow Metab. 2, 221 – 228.en_US
dc.identifier.citedreferenceWesterink B. H. C., Bosher F. J., and Wirix E. ( 1984 ) Formation and metabolism of dopamine in nine areas of the rat brain: modification by haloperidol. J. Neurochem. 42, 1321 – 1327.en_US
dc.identifier.citedreferenceZaczek R. and Coyle J. T. ( 1982 ) Rapid and simple method for measuring biogenic amines and metabolites in brain homogenates by HPLC electrochemical detection. J. Neural Transm. 53, 1 – 5.en_US
dc.identifier.citedreferenceZetterstrom T., Sharp T., Marsden C. A., and Ungerstedt U. ( 1983 ) In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine. J. Neurochem. 41, 1769 – 1773.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.