Show simple item record

Topographical heterogeneity of K IR currents in pericyte-containing microvessels of the rat retina: effect of diabetes

dc.contributor.authorMatsushita, Kenjien_US
dc.contributor.authorPuro, Donald G.en_US
dc.date.accessioned2010-04-01T15:44:00Z
dc.date.available2010-04-01T15:44:00Z
dc.date.issued2006-06-01en_US
dc.identifier.citationMatsushita, Kenji; Puro, Donald G. (2006). "Topographical heterogeneity of K IR currents in pericyte-containing microvessels of the rat retina: effect of diabetes." The Journal of Physiology 573(2): 483-495. <http://hdl.handle.net/2027.42/66224>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66224
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16581863&dopt=citationen_US
dc.format.extent482532 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2006 The Authors. Journal compilation © 2006 The Physiological Societyen_US
dc.titleTopographical heterogeneity of K IR currents in pericyte-containing microvessels of the rat retina: effect of diabetesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USAen_US
dc.contributor.affiliationotherDepartment of Ophthalmology & Visual Sciencesen_US
dc.identifier.pmid16581863en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66224/1/jphysiol.2006.107102.pdf
dc.identifier.doi10.1113/jphysiol.2006.107102en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceBarry PH ( 1994 ). JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J Neurosci Meth 51, 107 – 116.en_US
dc.identifier.citedreferenceChakravarthy U, Hayes RG, Stitt AW & Douglas A ( 1997 ). Endothelin expression in ocular tissues of diabetic and insulin-treated rats. Invest Ophthalmol Vis Sci 38, 2144 – 2151.en_US
dc.identifier.citedreferenceChilton L & Loutzenhiser R ( 2001 ). Functional evidence for an inward rectifier potassium current in rat renal afferent arterioles. Circ Res 88, 152 – 158.en_US
dc.identifier.citedreferenceChrissobolis S & Sobey CG ( 2003 ). Inwardly rectifying potassium channels in the regulation of vascular tone. Curr Drug Targets 4, 281 – 289.en_US
dc.identifier.citedreferenceCoburn RF, Jones DH, Morgan CP, Baron CB & Cockcroft S ( 2002 ). Spermine increases phosphatidylinositol 4,5-bisphosphate content in permeabilized and nonpermeabilized HL60 cells. Biochim Biophys Acta 1584, 20 – 30.en_US
dc.identifier.citedreferenceCullis PM, Green RE, Merson-Davies L & Travis N ( 1999 ). Probing the mechanism of transport and compartmentalisation of polyamines in mammalian cells. Chem Biol 6, 717 – 729.en_US
dc.identifier.citedreferenceEdwards FR, Hirst GD & Silverberg GD ( 1988 ). Inward rectification in rat cerebral arterioles; involvement of potassium ions in autoregulation. J Physiol 404, 455 – 466.en_US
dc.identifier.citedreferenceEnkvetchakul D, Ebihara L & Nichols CG ( 2003 ). Polyamine flux in Xenopus oocytes through hemi-gap junctional channels. J Physiol 553, 95 – 100.en_US
dc.identifier.citedreferenceFunk RH ( 1997 ). Blood supply of the retina. Ophthalmic Res 29, 320 – 325.en_US
dc.identifier.citedreferenceGilad GM & Gilad VH ( 1991 ). Polyamine uptake, binding and release in rat brain. Eur J Pharmacol 193, 41 – 46.en_US
dc.identifier.citedreferenceGrunwald JE & Bursell S ( 1996 ). Hemodynamic changes as early markers of diabetic retinopathy. Curr Opin Endocrinol Diabetes 3, 298 – 306.en_US
dc.identifier.citedreferenceHe Z & King GL ( 2004 ). Microvascular complications of diabetes. Endocrinol Metab Clin North Am 33, 215 – 238. xi – xii.en_US
dc.identifier.citedreferenceHille B ( 2001 ). Ion Channels of Excitable Membranes. Sinauer Associates, Inc, Sunderland, Massachusetts.en_US
dc.identifier.citedreferenceHirschi KK & D'Amore PA ( 1996 ). Pericytes in the microvasculature. Cardiovasc Res 32, 687 – 698.en_US
dc.identifier.citedreferenceKarkanis T, Li S, Pickering JG & Sims SM ( 2003 ). Plasticity of KIR channels in human smooth muscle cells from internal thoracic artery. Am J Physiol Heart Circ Physiol 284, H2325 – H2334.en_US
dc.identifier.citedreferenceKawamura H, Kobayashi M, Li Q, Yamanishi S, Katsumura K, Minami M, Wu DM & Puro DG ( 2004 ). Effects of angiotensin II on the pericyte-containing microvasculature of the rat retina. J Physiol 561, 671 – 683.en_US
dc.identifier.citedreferenceKawamura H, Oku H, Li Q, Sakagami K & Puro DG ( 2002 ). Endothelin-induced changes in the physiology of retinal pericytes. Invest Ophthalmol Vis Sci 43, 882 – 888.en_US
dc.identifier.citedreferenceKawamura H, Sugiyama T, Wu DM, Kobayashi M, Yamanishi S, Katsumura K & Puro DG ( 2003 ). ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina. J Physiol 551, 787 – 799.en_US
dc.identifier.citedreferenceKodama T, Oku H, Kawamura H, Sakagami K & Puro DG ( 2001 ). Platelet-derived growth factor-BB: a survival factor for the retinal microvasculature during periods of metabolic compromise. Curr Eye Res 23, 93 – 97.en_US
dc.identifier.citedreferenceKuwabara T & Cogan D ( 1960 ). Studies of retinal vascular patterns. 1: normal architecture. Arch Ophthalmol 64, 904 – 911.en_US
dc.identifier.citedreferenceLi Q & Puro DG ( 2001 ). Adenosine activates ATP-sensitive K + currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors. Brain Res 907, 93 – 99.en_US
dc.identifier.citedreferenceLopatin AN, Makhina EN & Nichols CG ( 1994 ). Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372, 366 – 369.en_US
dc.identifier.citedreferenceMizutani M, Kern TS & Lorenzi M ( 1996 ). Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 97, 2883 – 2890.en_US
dc.identifier.citedreferenceNicoletti R, Venza I, Ceci G, Visalli M, Teti D & Reibaldi A ( 2003 ). Vitreous polyamines spermidine, putrescine, and spermine in human proliferative disorders of the retina. Br J Ophthalmol 87, 1038 – 1042.en_US
dc.identifier.citedreferenceOku H, Kodama T, Sakagami K & Puro DG ( 2001 ). Diabetes-induced disruption of gap junction pathways within the retinal microvasculature. Invest Ophthalmol Vis Sci 42, 1915 – 1920.en_US
dc.identifier.citedreferenceQuayle JM, Dart C & Standen NB ( 1996 ). The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. J Physiol 494, 715 – 726.en_US
dc.identifier.citedreferenceQuayle JM, McCarron JG, Brayden JE & Nelson MT ( 1993 ). Inward rectifier K + currents in smooth muscle cells from rat resistance-sized cerebral arteries. Am J Physiol 265, C1363 – C1370.en_US
dc.identifier.citedreferenceSakagami K, Wu DM & Puro DG ( 1999 ). Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules. J Physiol 521, 637 – 650.en_US
dc.identifier.citedreferenceSchonfelder U, Hofer A, Paul M & Funk RH ( 1998 ). In situ observation of living pericytes in rat retinal capillaries. Microvasc Res 56, 22 – 29.en_US
dc.identifier.citedreferenceShepro D & Morel NM ( 1993 ). Pericyte physiology. FASEB J 7, 1031 – 1038.en_US
dc.identifier.citedreferenceSugiyama T, Kawamura H, Yamanishi S, Kobayashi M, Katsumura K & Puro DG ( 2005 ). Regulation of P2X 7 -induced pore formation and cell death in pericyte-containing retinal microvessels. Am J Physiol Cell Physiol 288, C568 – C576.en_US
dc.identifier.citedreferenceSugiyama T, Kobayshi M, Kawamura H, Li Q & Puro DG ( 2004 ). Enhancement of P2X 7 -induced pore formation and apoptosis: an early effect of diabetes on the retinal microvasculature. Invest Ophthalmol Vis Sci 45, 1026 – 1032.en_US
dc.identifier.citedreferenceTakagi C, Bursell SE, Lin YW, Takagi H, Duh E, Jiang Z, Clermont AC & King GL ( 1996 ). Regulation of retinal hemodynamics in diabetic rats by increased expression and action of endothelin-1. Invest Ophthalmol Vis Sci 37, 2504 – 2518.en_US
dc.identifier.citedreferenceTilton RG ( 1991 ). Capillary pericytes: perspectives and future trends. J Electron Microsc Tech 19, 327 – 344.en_US
dc.identifier.citedreferenceTilton RG, LaRose LS, Kilo C & Williamson JR ( 1986 ). Absence of degenerative changes in retinal and uveal capillary pericytes in diabetic rats. Invest Ophthalmol Vis Sci 27, 716 – 721.en_US
dc.identifier.citedreferenceWalker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP & Williams RL ( 2000 ). Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6, 909 – 919.en_US
dc.identifier.citedreferenceWu DM, Kawamura H, Sakagami K, Kobayashi M & Puro DG ( 2003 ). Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol Heart Circ Physiol 284, H2083 – H2090.en_US
dc.identifier.citedreferenceWu DM, Miniami M, Kawamura H & Puro DG ( 2006 ). Electrotonic transmission within pericyte-containing retinal microvessels. Microcirculation ( in press ).en_US
dc.identifier.citedreferenceXie LH, John SA, Ribalet B & Weiss JN ( 2005 ). Long polyamines act as cofactors in PIP2 activation of inward rectifier potassium (Kir2.1) channels. J Gen Physiol 126, 541 – 549.en_US
dc.identifier.citedreferenceYamanishi S, Katsumura K, Kobayashi T & Puro DG ( 2006 ). Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am J Physiol Heart Circ Physiol 290, H925 – H934.en_US
dc.identifier.citedreferenceYe XD, Laties AM & Stone RA ( 1990 ). Peptidergic innervation of the retinal vasculature and optic nerve head. Invest Ophthalmol Vis Sci 31, 1731 – 1737.en_US
dc.identifier.citedreferenceZaritsky JJ, Eckman DM, Wellman GC, Nelson MT & Schwarz TL ( 2000 ). Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K + current in K + -mediated vasodilation. Circ Res 87, 160 – 166.en_US
dc.identifier.citedreferenceZhang H, He C, Yan X, Mirshahi T & Logothetis DE ( 1999 ). Activation of inwardly rectifying K + channels by distinct PtdIns(4,5)P 2 interactions. Nat Cell Biol 1, 183 – 188.en_US
dc.identifier.citedreferenceZhao HB & Santos-Sacchi J ( 1998 ). Effect of membrane tension on gap junctional conductance of supporting cells in Corti's organ. J Gen Physiol 112, 447 – 455.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.