Show simple item record

Receptor Activation and Inositol Lipid Hydrolysis in Neural Tissues

dc.contributor.authorFisher, Stephen K.en_US
dc.contributor.authorAgranoff, Bernard W.en_US
dc.date.accessioned2010-04-01T15:44:15Z
dc.date.available2010-04-01T15:44:15Z
dc.date.issued1987-04en_US
dc.identifier.citationFisher, Stephen K.; Agranoff, Bernard W. (1987). "Receptor Activation and Inositol Lipid Hydrolysis in Neural Tissues." Journal of Neurochemistry 48(4): 999-1017. <http://hdl.handle.net/2027.42/66228>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66228
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=3029333&dopt=citationen_US
dc.format.extent2266618 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1987 International Society for Neurochemistryen_US
dc.titleReceptor Activation and Inositol Lipid Hydrolysis in Neural Tissuesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Neuroscience Laboratory and Departments of Pharmacology, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationumNeuroscience Laboratory and Departments of Biological Chemistry, and Psychiatry, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid3029333en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66228/1/j.1471-4159.1987.tb05618.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1987.tb05618.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAbdel-Latif A. A. ( 1986 ) Calcium mobilizing receptors, polyphos-phoinositides, and the generation of second messengers. Pharmacol. Rev. 38, 227 – 272.en_US
dc.identifier.citedreferenceAbdel-Latif A. A., Yau S.-J., and Smith J. P. ( 1974 ) Effect of neuro-transmitters on phospholipid metabolism in rat cerebral-cortex slices—cellular and subcellular distribution. J. Neurochem. 22, 383 – 393.en_US
dc.identifier.citedreferenceAgranoff B. W. ( 1978 ) Cyclitol confusion. Trends Biochem. Sci. 3, N283 – N285.en_US
dc.identifier.citedreferenceAgranoff B. W. ( 1981 ) Learning and memory: biochemical approaches, in Basic Neurochemistry ( Katzman, R., eds ), pp. 801 – 820. Little Brown and Co., Boston.en_US
dc.identifier.citedreferenceAgranoff B. W. ( 1987 ) Receptor-mediated phosphoinositide metabolism, in Advances in Experimental Biology and Medicine: Molecular Mechanisms of Neuronal Responsiveness ( Lenox R. H., eds ), in press. Plenum Press, New York.en_US
dc.identifier.citedreferenceAgranoff B. W. and Seguin E. B. ( 1974 ) Preparation of inositol trisphosphate from brain: GLC of trimethylsilyl derivative. Prep. Biochem. 4, 359 – 366.en_US
dc.identifier.citedreferenceAgranoff B. W., Bradley R. M., and Brady R. O. ( 1958 ) The enzymatic synthesis of inositol phosphatide. J. Biol. Chem. 233, 1077 – 1083.en_US
dc.identifier.citedreferenceAgranoff B. W., Murthy P., and Seguin E. B. ( 1983 ) Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets. J. Biol. Chem. 258, 2076 – 2078.en_US
dc.identifier.citedreferenceAgranoff B. W., Eisenberg, F., Hauser, G., Hawthorne J. N., and Michell R. H. ( 1985 ) Comment on abbreviations, in Cyclitols and Inositides ( Eichberg, J., eds ), pp. xxi – xxii. Humana Press, Clifton, New Jersey.en_US
dc.identifier.citedreferenceAkhtar R. A. and Abdel-Latif A. A. ( 1980 ) Requirement for calcium ions in acetylcholine-stimulated phosphodiesteratic cleavage of phosphatidyl-myo-inositol 4,5-bisphosphate in rabbit iris smooth muscle. Biochem. J. 192, 783 – 791.en_US
dc.identifier.citedreferenceAkhtar R. A. and Abdel-Latif A. A. ( 1986 ) Surgical sympathetic denervation increases Α 1 -adrenoceptor-mediated accumulation of myo-inositol trisphosphate and muscle contraction in rabbit iris dilator smooth muscle. J. Neurochem. 46, 96 – 104.en_US
dc.identifier.citedreferenceAkiyama K., Vickroy T. W., Watson M., Roeske W. R., Reisine T. D., Smith T. L., and Yamamura H. I. ( 1986 ) Muscarinic cholinergic ligand binding to intact mouse pituitary tumor cells (AtT-20/D16–16) coupling with two biochemical effectors: ad-enylate cyclase and phosphatidylinositol turnover. J. Pharmacol. Exp. Ther. 236, 653 – 661.en_US
dc.identifier.citedreferenceAllison J. H. and Blisner M. E. ( 1976 ) Inhibition of the effect of lithium on brain inositol by atropine and scopolamine. Biochem. Biophys. Res. Commun. 68, 1332 – 1338.en_US
dc.identifier.citedreferenceAllison J. H., Blisner M. E., Holland W. H., Hipps P. P., and Sherman W. R. ( 1976 ) Increased brain myo-inositol 1-phosphate in lithium-treated rats. Biochem. Biophys. Res. Commun. 71, 664 – 670.en_US
dc.identifier.citedreferenceAnderson R. E. and Hollyfield J. G. ( 1981 ) Light stimulates the incorporation of inositol into phosphatidylinositol in the retina. Biochim. Biophys. Acta. 665, 619 – 622.en_US
dc.identifier.citedreferenceAnderson R. E. and Hollyfield J. G. ( 1984 ) Inositol incorporation into phosphoinositides in retinal horizontal cells of Xenopus laevis: enhancement by acetylcholine, inhibition by glycine. J. Cell Biol. 99, 686 – 691.en_US
dc.identifier.citedreferenceAnderson R. E., Maude M. B., Kelleher P. A., Rayborn M. E., and Hollyfield J. G. ( 1983 ) Phosphoinositide metabolism in the retina: localization to horizontal cells and regulation by light and divalent cations. J. Neurochem. 41, 764 – 771.en_US
dc.identifier.citedreferenceAudigier S., Barberis C., and Jard S. ( 1986 ) Vasoactive intestinal polypeptide increases inositol phospholipid breakdown in the rat superior cervical ganglion. Brain Res. 376, 363 – 367.en_US
dc.identifier.citedreferenceBaraban J. M., Snyder S. H., and Alger B. E. ( 1985 ) Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: electrophysiological effects of phorbol esters. Proc. Natl. Acad. Sci. USA 82, 2538 – 2542.en_US
dc.identifier.citedreferenceBatty I. R., Nahorski S. R., and Irvine R. F. ( 1985 ) Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem. J. 232, 211 – 215.en_US
dc.identifier.citedreferenceBaudry M., Evans J., and Lynch G. ( 1986 ) Excitatory amino acids inhibit stimulation of phosphatidylinositol metabolism by aminergic agonists in hippocampus. Nature 319, 329 – 331.en_US
dc.identifier.citedreferenceBaukal A. J., Guillemette G., Rubin R., Spat A., and Catt K. J. ( 1985 ) Binding sites for inositol trisphosphate in the bovine adrenal cortex. Biochem. Biophys. Res. Commun. 133, 532 – 538.en_US
dc.identifier.citedreferenceBell M. E., Peterson R. G., and Eichberg J. ( 1982 ) Metabolism of phospholipids in peripheral nerve from rats with chronic strep-tozotocin-induced diabetes: increased turnover of phosphati-dylinositol-4,5-bisphosphate. J. Neurochem. 39, 192 – 200.en_US
dc.identifier.citedreferenceBenjamins J. A. and Agranoff B. W. ( 1969 ) Distribution and properties of CDP-diglyceride: inositol transferase from brain. J. Neurochem. 16, 513 – 527.en_US
dc.identifier.citedreferenceBenowitz L. I. and Lewis E. R. ( 1983 ) Increased transport of 44,000–to 49,000-dalton acidic proteins during regeneration of the goldfish optic nerve: a two-dimensional gel analysis. J. Neu-rosci. 3, 2153 – 2163.en_US
dc.identifier.citedreferenceBerridge M. J. ( 1984 ) Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220, 345 – 360.en_US
dc.identifier.citedreferenceBerridge M. ( 1986 ) Second messenger dualism in neuromodulation and memory. Nature 323, 294 – 295.en_US
dc.identifier.citedreferenceBerridge M. J. and Irvine R. F. ( 1984 ) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315 – 321.en_US
dc.identifier.citedreferenceBerridge M. J., Downes C. P., and Hanley M. R. ( 1982 ) Lithium amplified agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587 – 595.en_US
dc.identifier.citedreferenceBerridge M. J., Dawson R. M. C., Downes C. P., Heslop J. P., and Irvine R. F. ( 1983 ) Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoino-sitides. Biochem. J. 212, 473 – 482.en_US
dc.identifier.citedreferenceBerti-Mattera L., Peterson R., Bell M., and Eichberg J. ( 1985 ) Effect of hyperglycemia and its prevention by insulin treatment on the incorporation of 32 P into polyphosphoinositides and other phospholipids in peripheral nerve of the streptozotocin diabetic rat. J. Neurochem. 45, 1692 – 1698.en_US
dc.identifier.citedreferenceBone E. A. and Michell R. H. ( 1985 ) Accumulation of inositol phosphates in sympathetic ganglia. Effects of depolarization and of amine peptide neurotransmitters. Biochem. J. 227, 263 – 269.en_US
dc.identifier.citedreferenceBone E. A., Fretten P., Palmer S., Kirk C. J., and Michell R. H. ( 1984 ) Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to V 1 -vaso-pressin and muscarinic cholinergic stimuli. Biochem. J. 221, 803 – 811.en_US
dc.identifier.citedreferenceBriggs C. A., Horwitz J., McAfee D. A., Tsymbalov S., and Perlman R. L. ( 1985 ) Effects of neuronal activity on inositol phospho-lipid metabolism in the rat autonomic nervous system. J. Neurochem. 44, 731 – 739.en_US
dc.identifier.citedreferenceBrown E., Kendall D. A., and Nahorski S. R. ( 1984 ) Inositol phos-pholipid hydrolysis in rat cerebral cortical slices: 1. Receptor characterisation. J. Neurochem. 42, 1379 – 1387.en_US
dc.identifier.citedreferenceBrown J. H. and Brown S. L. ( 1984 ) Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phosphoinositide metabolism. J. Biol. Chem 259, 3777 – 3781.en_US
dc.identifier.citedreferenceBrown J. H., Goldstein D., and Masters S. B. ( 1985 ) The putative Ml muscarinic receptor does not regulate phosphoinositide hydrolysis: studies with pirenzepine and McN-A-343 in chick heart and astrocytoma cells. Mol. Pharmacol. 27, 525 – 531.en_US
dc.identifier.citedreferenceBurgess G. M., Godfrey P. P., McKinney J. S., Berridge, M. J., Irvine, R. F., and Putney, J. W. ( 1984 ) The second messenger linking receptor activation to internal Ca release in liver. Nature 309, 63 – 66.en_US
dc.identifier.citedreferenceCarswell H. and Young J. M. ( 1986 ) Regional variation in the characteristics of histamine H 1 -agonist-mediated breakdown of inositol phospholipids in guinea-pig brain. Br. J. Pharmacol. 89, 809 – 817.en_US
dc.identifier.citedreferenceCarter J. R. and Kennedy E. P. ( 1966 ) Enzymatic synthesis of cyti-dine diphosphate diglyceride. J. Lipid Res. 7, 678 – 683.en_US
dc.identifier.citedreferenceCheek T. R. and Burgoyne R. D. ( 1985 ) Effect of activation of muscarinic receptors on intracellular free calcium and secretion in bovine adrenal chromaffin cells. Biochim. Biophys. Acta 846, 167 – 173.en_US
dc.identifier.citedreferenceClaro E., Arbones L., Garcia A., and Picatoste F. ( 1986 ) Phosphoinositide hydrolysis mediated by histamine H 1 -receptors in rat brain cortex. Eur. J. Pharmacol. 123, 187 – 196.en_US
dc.identifier.citedreferenceCohen N. M., Schmidt D. M., McGlennen R. C., and Klein W. L. ( 1983 ) Receptor-mediated increases in phosphatidylinositol turnover in neuron-like cell lines. J. Neurochem 40, 547 – 554.en_US
dc.identifier.citedreferenceColodzin M. and Kennedy E. P. ( 1965 ) Biosynthesis of diphospho-inositide in brain. J. Biol. Chem. 240, 3771 – 3780.en_US
dc.identifier.citedreferenceConn P. J. and Sanders-Bush E. ( 1984 ) Selective 5HT-2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacology 23, 993 – 996.en_US
dc.identifier.citedreferenceConn P. J. and Sanders-Bush E. ( 1985 ) Serotonin-stimulated phosphoinositide turnover: mediation by the S 2 binding site in rat cerebral cortex but not in subcortical regions. J. Pharmacol. Exp. Ther. 234, 195 – 203.en_US
dc.identifier.citedreferenceConn P. J. and Sanders-Bush E. ( 1986 ) Biochemical characterization of serotonin stimulated phosphoinositide turnover. Life Sci. 38, 663 – 669.en_US
dc.identifier.citedreferenceConn P. J., Sanders-Bush E., Hoffman B. J., and Hartig P. R. ( 1986 ) A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc. Natl. Acad. Sci. USA 83, 4086 – 4088.en_US
dc.identifier.citedreferenceConnolly T. M. and Majerus P. W. ( 1986 ) Protein kinase C (PKC) phosphorylates human platelet inositol trisphosphate 5′-phos-phomonoesterase (IP 3 5′-p'tase) increasing phosphatase activity. Fed. Proc. 45, 1872.en_US
dc.identifier.citedreferenceConnolly T. M., Bross T. E., and Majerus P. W. ( 1985 ) Isolation of a phosphomonoesterase from human platelets that specifically hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate. J. Biol. Chem. 260, 7868 – 7874.en_US
dc.identifier.citedreferenceConnolly T. M., Wilson D. B., Bross T. E., and Majerus P. W. ( 1986 ) Isolation and characterization of the inositol cyclic phosphate products of phosphoinositide cleavage by phospho-lipase C. J. Biol. Chem. 261, 122 – 126.en_US
dc.identifier.citedreferenceDaniel L. W., Waite M., and Wykle R. L. ( 1986 ) A novel mechanism of diglyceride formation. J. Biol. Chem. 261, 9128 – 9132.en_US
dc.identifier.citedreferenceDaum P. R., Downes C. P., and Young J. M. ( 1983 ) Histamine-induced inositol phospholipid breakdown mirrors H 1 -receptor density in brain. Eur. J. Pharmacol. 87, 497 – 498.en_US
dc.identifier.citedreferenceDaum P. R., Downes C. P., and Young J. M. ( 1984 ) Histamine stimulation of inositol 1-phosphate accumulation in lithium-treated slices from regions of guinea pig brain. J. Neurochem. 43, 25 – 32.en_US
dc.identifier.citedreferenceDawson A. P. ( 1985 ) GTP enhances inositol trisphosphate-stimu-lated Ca 2+ release from rat liver microsomes. FEBS Lett. 185, 147 – 150.en_US
dc.identifier.citedreferenceDawson R. M. C. ( 1959 ) Studies on the enzymic hydrolysis of monophosphoinositide by phospholipase preparations from P. notatum and ox pancreas. Biochim. Biophys. Acta 33, 68 – 77.en_US
dc.identifier.citedreferenceDawson R. M. C., Freinkel N., Jungalwala F. B., and Clarke N. ( 1971 ) The enzymic formation of myoinositol 1:2 cyclic phosphate from phosphatidylinositol. Biochem. J. 122, 605 – 607.en_US
dc.identifier.citedreferenceDe Riemer S. A., Strong J. A., Albert K. A., Greengard P., and Kaczmarek L. K. ( 1986 ) Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Na-ture 313, 313 – 316.en_US
dc.identifier.citedreferenceDonaldson J. and Hill S. J. ( 1986 ) Histamine-induced hydrolysis of polyphosphoinositides in guinea-pig ileum and brain. Eur. J. Pharmacol. 124, 255 – 265.en_US
dc.identifier.citedreferenceDownes C. P. ( 1982 ) Receptor-stimulated inositol phospholipid metabolism in the central nervous system. Cell Calcium 3, 413 – 428.en_US
dc.identifier.citedreferenceDownes C. P. ( 1983 ) Inositol phospholipids and neurotransmitter-receptor signalling mechanisms. Trends Neurosci 6, 313 – 316.en_US
dc.identifier.citedreferenceDownes C. P. ( 1986 ) Inositol phosphates: concord or confusion? Trends Neurosci. 9, 394 – 396.en_US
dc.identifier.citedreferenceDownes C. P. and Stone M. A. ( 1986 ) Lithium-induced reduction in intracellular inositol supply in cholinergically stimulated parotid gland. Biochem. J. 234, 199 – 204.en_US
dc.identifier.citedreferenceDrummond A. H. and Raeburn C. A. ( 1984 ) The interaction of lithium with thyrotropin-releasing hormone-stimulated lipid metabolism in GH 3 pituitary tumour cells. Biochem. J. 224, 129 – 136.en_US
dc.identifier.citedreferenceEberhard D. and Holz R. W. ( 1987 ) Nicotinic and muscarinic receptor activation and micromolar Ca 2+ stimulate production of inositol phosphates in bovine adrenal chromaffin cells. J. Neurochem. (in press).en_US
dc.identifier.citedreferenceEichberg J. and Hauser G. ( 1973 ) The subcellular distribution of polyphosphoinositides in myelinated and unmyelinated rat brain. Biochim. Biophys. Acta 326, 210 – 223.en_US
dc.identifier.citedreferenceEisenberg, F. ( 1967 ) d-Myoinositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J. Biol. Chem. 242, 1375 – 1382.en_US
dc.identifier.citedreferenceEnjalbert A., Sladeczek F., Guillon G., Bertrand P., Shu C., Epel-baum J., Garcia-Sainz A., Jard S., Lombard C., Kordon C., and Bockaert J. ( 1986 ) Angiotensin II and dopamine modulate both cAMP and inpsitol phosphate productions in anterior pituitary cells. J. Biol. Chem. 261, 4071 – 4075.en_US
dc.identifier.citedreferenceErneaux C., Delvaux A., Moreau C., and Dumont J. E. ( 1986 ) Characterization of d-myo-inositol 1,4,5-trisphosphate phosphatase in rat brain. Biochem. Biophys. Res. Commun. 134, 351 – 358.en_US
dc.identifier.citedreferenceEva C. and Costa E. ( 1986 ) Potassium ion facilitation of phospho-inositide turnover activation by muscarinic receptor agonists in rat brain. J. Neurochem. 46, 1429 – 1435.en_US
dc.identifier.citedreferenceEvans T., Hepler J. R., Masters S. B., Brown J. H., and Harden T. K. ( 1985 ) Guanine nucleotide regulation of agonist binding to muscarinic cholinergic receptors. Biochem. J. 232, 751 – 757.en_US
dc.identifier.citedreferenceFigueiredo J. C., Fisher S. K., and Horowitz M. I. ( 1986 ) Modulation of muscarinic and nicotinic cholinergic receptor mediated catecholamine secretion in guinea pig chromaffin cells by phor-bol esters. Fed. Proc. 45, 505.en_US
dc.identifier.citedreferenceFisher S. K. ( 1986 ) Inositol lipids and signal transduction at CNS muscarinic receptors. Trends Pharmacol. Sci. Supp.l: Subtypes of Muscarinic Receptors II, 61 – 65.en_US
dc.identifier.citedreferenceFisher S. K. and Agranoff B. W. ( 1980 ) Calcium and the muscarinic synaptosomal phospholipid labeling effect. J. Neurochem. 34, 1231 – 1240.en_US
dc.identifier.citedreferenceFisher S. K. and Agranoff B. W. ( 1981 ) Enhancement of the muscarinic synaptosomal phospholipid labeling effect by the iono-phore A23187. J. Neurochem. 37, 968 – 977.en_US
dc.identifier.citedreferenceFisher S. K. and Agranoff B. W. ( 1985 ) The biochemical basis and functional significance of enhanced phosphatidate and phos-phoinositide turnover, in Phospholipids in Nervous Tissues ( Eichberg J., ed ), pp. 241 – 295. John Wiley, New York.en_US
dc.identifier.citedreferenceFisher S. K. and Agranoff B. W. ( 1986 ) Phosphoinositide turnover in the CNS and in neural-related tissues, in Receptor Biochemistry and Methodology: Receptors and Phosphoinositides ( Putney, J. W., ed ), pp. 219 – 243. Alan R. Liss, New York.en_US
dc.identifier.citedreferenceFisher S. K. and Bartus R. T. ( 1985 ) Regional differences in the coupling of muscarinic receptors to inositol phospholipid hydrolysis in guinea pig brain. J. Neurochem. 45, 1085 – 1095.en_US
dc.identifier.citedreferenceFisher S. K. and Snider R. M. ( 1986 ) Receptor occupancy requirements for muscarinic receptor-stimulated phosphoinositide turnover in brain and in neuroblastoma. (Abstr) Soc. Neurosci. Abstr. 12, 491.en_US
dc.identifier.citedreferenceFisher S. K., Boast C. A., and Agranoff B. W. ( 1980 ) The muscarinic stimulation of phospholipid labeling is independent of its cholinergic input. Brain Res. 189, 284 – 288.en_US
dc.identifier.citedreferenceFisher S. K., Frey K. A., and Agranoff B. W. ( 1981a ) Loss of muscarinic receptors and of stimulated phospholipid labeling in ibo-tenate-treated hippocampus. J. Neurosci. 1, 1407 – 1413.en_US
dc.identifier.citedreferenceFisher S. K., Holz R. W., and Agranoff B. W. ( 1981b ) Muscarinic receptors in chromaffin cell cultures mediate enhanced phospholipid labeling but not catecholamine secretion. J. Neurochem. 37, 491 – 497.en_US
dc.identifier.citedreferenceFisher S. K., Klinger P. D., and Agranoff B. W. ( 1983 ) Muscarinic agonist binding and phospholipid turnover in brain. J. Biol. Chem. 258, 7358 – 7363.en_US
dc.identifier.citedreferenceFisher S. K., Figueiredo J. C., and Bartus R. T. ( 1984 ) Differential stimulation of inositol phospholipid turnover in brain by analogs of oxotremorine. J. Neurochem. 43, 1171 – 1179.en_US
dc.identifier.citedreferenceFowler C. J., Magnusson O., Mohammed A. K., Danysz W., and Archer T. ( 1986 ) The effect of selective noradrenergic lesions upon the stimulation by noradrenaline of inositol phospholipid breakdown in rat hippocampal miniprisms. Eur. J. Pharmacol. 123, 401 – 407.en_US
dc.identifier.citedreferenceGershengorn M. and Paul M. E. ( 1986 ) Evidence for tight coupling of receptor occupancy by thyrotropin-releasing hormone to phospholipase C-mediated phosphoinositide hydrolysis in rat pituitary cells: use of chlordiazepoxide as a competitive antagonist. Endocrinology 119, 833 – 839.en_US
dc.identifier.citedreferenceGil D. W. and Wolfe B. B. ( 1985 ) Pirenzepine distinguishes between muscarinic receptor-mediated phosphoinositide breakdown and inhibition of adenylate cyclase. J. Pharmacol. Exp. Ther. 232, 608 – 616.en_US
dc.identifier.citedreferenceGill D. L., Ueda T., Chueh S.-H., and Noel M. W. ( 1986 ) Ca 2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism. Nature 320, 461 – 464.en_US
dc.identifier.citedreferenceGispen W. H., Leunissen J. L. M., Oestreicher A. B., Verkleij A. J., and Zwiers H. ( 1985 ) Presynaptic localization of B-50 phos-phoprotein: the (ACTH)-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism. Brain Res. 328, 381 – 385.en_US
dc.identifier.citedreferenceGoedert M., Pinnock R. D., Downes C. P., Mantyh P. W., and Em-son P. C. ( 1984 ) Neurotensin stimulates inositol phospholipid hydrolysis in rat brain slices. Brain Res. 323, 193 – 197.en_US
dc.identifier.citedreferenceGoelet P., Castellucci V. F., Schacher S., and Kandel E. R. ( 1986 ) The long and the short of long-term memory—a molecular framework. Nature 322, 419 – 422.en_US
dc.identifier.citedreferenceGonzales R. A. and Crews F. T. ( 1984 ) Characterization of the cholinergic stimulation of phosphoinositide hydrolysis of rat brain slices. J. Neurosci. 4, 3120 – 3127.en_US
dc.identifier.citedreferenceGonzales R. A. and Crews F. T. ( 1985 ) Guanine nucleotides stimulate production of inositol trisphosphate in rat cortical membranes. Biochem. J. 232, 799 – 804.en_US
dc.identifier.citedreferenceGonzales R. A., Feldstein J. B., Crews F. T., and Raizada M. K. ( 1985 ) Receptor mediated inositide hydrolysis is a neuronal response: comparison of primary neuronal and glial cultures. Brain Res 345, 350 – 355.en_US
dc.identifier.citedreferenceGoswami S. K. and Gould R. M. ( 1985 ) Effect of electrical stimulation on phosphoinositide metabolism in rat sciatic nerve in vivo. J. Neurochem. 44, 941 – 946.en_US
dc.identifier.citedreferenceGreene D. A. and Lattimer S. A. ( 1983 ) Impaired rat sciatic nerve sodium-potassium adenosine triphosphate in acute streptozo-tocin diabetes and its correction by myo-inositol supplementation. J. Clin. Invest. 72, 1058 – 1063.en_US
dc.identifier.citedreferenceGreene D. A. and Lattimer S. A. ( 1985 ) Altered nerve myo-inositol metabolism in experimental diabetes and its relationship to nerve function, in Inositol and Phosphoinositides: Metabolism and Biological Regulation ( Eichberg, J., and Hauser, G., eds ), pp. 563 – 582. Humana Press, Clifton, New Jersey.en_US
dc.identifier.citedreferenceGreene D. A. and Lattimer S. A. ( 1986 ) Protein kinase C agonists acutely normalize decreased ouabain-inhibitable respiration in diabetic rabbit nerve: implications for (Na,K)-ATPase regulation and diabetic complications. Diabetes 35, 242 – 245.en_US
dc.identifier.citedreferenceGriffin H. D. and Hawthorne J. N. ( 1978 ) Calcium-activated hydrolysis of phosphatidyl-myo-inositol 4-phosphate and phos-phatidyl-myo-inositol 4,5-bisphosphate in guinea pig synapto-somes. Biochem. J. 176, 541 – 552.en_US
dc.identifier.citedreferenceGriffin H. D., Hawthorne J. N., and Sykes M. ( 1979 ) A calcium requirement for the phosphatidylinositol response following activation of presynaptic muscarinic receptors. Biochem. Pharmacol. 28, 1143 – 1147.en_US
dc.identifier.citedreferenceGusovsky F., Hollingsworth E. B., and Daly J. W. ( 1986 ) Regulation of phosphatidylinositol turnover in brain synaptoneuro-somes: stimulatory effects of agents that enhance influx of sodium ions. Proc. Natl. Acad. Sci. USA 83, 3003 – 3007.en_US
dc.identifier.citedreferenceHajra A. K., Fisher S. K., and Agranoff B. W. ( 1987 ) Isolation, separation and analysis of phosphoinositides from biological sources, in Neuromethods (Neurochemistry), Vol. 8: Lipids and Related Compounds ( Hor-rocks L. A., eds ), in press. Humana Press, Clifton, New Jersey.en_US
dc.identifier.citedreferenceHallcher L. M. and Sherman W. R. ( 1980 ) The effects of lithium ion and other agents on the activity of myo-inositol-1 -phosphatase from bovine brain. J. Biol. Chem. 255, 10896 – 10901.en_US
dc.identifier.citedreferenceHanley M. R., Benton H. P., Lightman S. L., Todd K., Bone E. A., Fretten P., Palmer, Sr, Kirk, C. J., and Michell R. H. ( 1984 ) A vasopressin-like peptide in the mammalian sympathetic nervous system. Nature 309, 258 – 261.en_US
dc.identifier.citedreferenceHansen C. A., Mah S., and Williamson J. R. ( 1986 ) Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver. J. Biol. Chem. 261, 8100 – 8103.en_US
dc.identifier.citedreferenceHauser G. and Parks J. M. ( 1983 ) Evidence from phospholipid metabolism changes for muscarinic cholinergic receptors on rat anterior pituitary cells. J. Neurosci. Res. 10, 295 – 302.en_US
dc.identifier.citedreferenceHawkins P. T., Stephens L., and Downes C. P. ( 1986 ) Rapid formation of inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands may both result indirectly from receptor-stimulated release of inositol 1,4,5-trisphos-phate from phosphatidylinositol 4,5-bisphosphate. Biochem. J. 238, 507 – 516.en_US
dc.identifier.citedreferenceHawthorne J. N. ( 1986 ) Does receptor-linked phosphoinositide metabolism provide messengers mobilizing calcium in nervous tissue? Int. Rev. Neurobiol. 28, 241 – 273.en_US
dc.identifier.citedreferenceHawthorne J. N. and Kai M. ( 1969 ) Metabolism of phosphoinosi-tides, in Handbook of Neurochemistry, Vol. 3 ( Lajtha A., ed ), pp. 491 – 508. Plenum Press, New York.en_US
dc.identifier.citedreferenceHawthorne J. N. and Pickard M. R. ( 1979 ) Phospholipids in synap-tic function. J. Neurochem. 32, 5 – 14.en_US
dc.identifier.citedreferenceHeacock A. M. and Agranoff B. W. ( 1982 ) Protein synthesis and transport in the regenerating goldfish visual system. Neurochem. Res. 7, 771 – 788.en_US
dc.identifier.citedreferenceHeacock A. M., Fisher S. K., and Agranoff B. W. ( 1987 ) Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover. J. Neurochem. (in press).en_US
dc.identifier.citedreferenceHigashida H. and Brown D. A. ( 1986 ) Two polyphosphatidylinosi-tol metabolites control two K + currents in a neuronal cell. Na-ture 323, 333 – 335.en_US
dc.identifier.citedreferenceHirasawa K. and Nishizuka Y. ( 1985 ) Phosphatidylinositol turnover in receptor mechanism and signal transduction. Annu. Rev. Pharmacol. Toxicol. 25, 147 – 170.en_US
dc.identifier.citedreferenceHokin L. E. ( 1965 ) Autoradiographic localization of the acetylcho-line-stimulated synthesis of phosphatidylinositol in the superior cervical ganglion. Proc. Natl. Acad. Sci. USA 53, 1369 – 1376.en_US
dc.identifier.citedreferenceHokin L. E. ( 1966 ) Effects of acetylcholine on the incorporation of 32 P into various phospholipids in slices of normal and dener-vated superior cervical ganglia of the cat. J. Neurochem. 13, 179 – 184.en_US
dc.identifier.citedreferenceHokin L. E. ( 1985 ) Receptors and phosphoinositide-generated second messengers. Annu. Rev. Biochem. 54, 205 – 235.en_US
dc.identifier.citedreferenceHokin L. E. and Hokin M. R. ( 1955 ) Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim. Biophys. Acta 18, 102 – 110.en_US
dc.identifier.citedreferenceHokin M. R. and Hokin L. E. ( 1959 ) The synthesis of phosphatidic acid from diglyceride and adenosine triphosphate in extracts of brain microsomes. J. Biol. Chem. 234, 1381 – 1386.en_US
dc.identifier.citedreferenceHokin M. R. and Hokin L. E. ( 1964 ) Interconversions of phosphatidylinositol and phosphatidic acid involved in the response to acetylcholine in the salt gland, in Metabolism and Physiological Significance of Lipids ( Dawson, R. M. C. and Rhodes, D. N., eds ), pp. 423 – 434. John Wiley and Sons, New York.en_US
dc.identifier.citedreferenceHollingsworth E. B. and Daly J. W. ( 1985 ) Accumulation of inositol phosphates and cyclic AMP in guinea-pig cerebral cortical preparations. Effects of norepinephrine, histamine, carbamyl-choline and 2-chloroadenosine. Biochim. Biophys. Acta 847, 207 – 216.en_US
dc.identifier.citedreferenceHolmsen H., Nilsen A. O., and Rongved S. ( 1985 ) Energy requirements for stimulus-response coupling. Adv. Exp. Med. Biol. 192, 215 – 233.en_US
dc.identifier.citedreferenceHorwitz J., Tsymbalov S., and Perlman R. L. ( 1984 ) Muscarine stimulates the hydrolysis of inositol-containing phospholipids in the superior cervical ganglion. J. Pharmacol. Exp. Ther. 233, 235 – 241.en_US
dc.identifier.citedreferenceHunter J. C., Goedert M., and Pinnock R. D. ( 1985 ) Mammalian tachykinin-induced hydrolysis of inositol phospholipids in rat brain slices. Biochem. Biophys. Res. Commun. 127, 616 – 622.en_US
dc.identifier.citedreferenceIrvine R. F., Letcher A. J., Lander D. J., and Downes C. P. ( 1984 ). Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem. J. 223, 237 – 243.en_US
dc.identifier.citedreferenceIrvine R. F., Letcher A. J., Heslop J. P., and Berridge M. J. ( 1986 ) The inositol tris/tetrakis phosphate pathway—demonstration of inositol (l,4,5)trisphosphate-3-kinase activity in animal tissues. Nature 320, 631 – 634.en_US
dc.identifier.citedreferenceJacobson M. D., Wusteman M., and Downes C. P. ( 1985 ) Muscarinic receptors and hydrolysis of inositol phospholipids in rat cerebral cortex and parotid gland. J. Neurochem. 44, 465 – 472.en_US
dc.identifier.citedreferenceJanowsky A., Labarca R., and Paul S. M. ( 1984 ) Noradrenergic de-nervation increases Α 1 -adrenoreceptor-mediated inositol-phosphate accumulation in the hippocampus. Eur. J. Pharmacol. 102, 193 – 194.en_US
dc.identifier.citedreferenceJohnson R. D. and Minneman K. P. ( 1985 ) Α-Adrenergic receptors and stimulation of [ 3 H]inositol metabolism in rat brain: regional distribution and parallel inactivation. Brain Res. 341, 7 – 15.en_US
dc.identifier.citedreferenceJolles J., Schrama L. H., and Gispen W. H. ( 1981 ) Calcium-dependent turnover of brain polyphosphoinositides in vitro after pre-labelling in vivo. Biochim. Biophys. Acta 666, 90 – 98.en_US
dc.identifier.citedreferenceJoseph S. K. ( 1985 ) Receptor-stimulated phosphoinositide metabolism: a role for GTP-binding proteins? Trends Biochem. Sci. 10, 297 – 298.en_US
dc.identifier.citedreferenceKai M., White G. L., and Hawthorne J. N. ( 1966 ) The phosphatidylinositol kinase of rat brain. Biochem. J. 101, 328 – 337.en_US
dc.identifier.citedreferenceKai M., Salway J. G., and Hawthorne J. N. ( 1968 ) The diphospho-inositide kinase of rat brain. Biochem. J. 106, 791 – 801.en_US
dc.identifier.citedreferenceKanba S., Kanba K. S., and Richelson E. ( 1986 ) The protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), inhibits muscarinic (M 1 ) receptor-mediated inositol phosphate release and cyclic GMP formation in murine neuroblastoma cells (clone N1E-115). Eur. J. Pharmacol. 125, 155 – 156.en_US
dc.identifier.citedreferenceKao L. S. and Schneider A. S. ( 1985 ) Muscarinic receptors on bovine chromaffin cells mediate a rise in cytosolic calcium that is independent of extracellular calcium. J. Biol. Chem. 260, 2019 – 2022.en_US
dc.identifier.citedreferenceKatz F., Ellis L., and Pfenninger K. H. ( 1985 ) Nerve growth cones isolated from fetal rat brain. III. Calcium-dependent protein phosphorylation. J. Neurosci. 5, 1402 – 1414.en_US
dc.identifier.citedreferenceKemp J. A. and Downes C. P. ( 1986 ) Noradrenaline-stimulated inositol phospholipid breakdown in rat dorsal lateral genicu-late nucleus neurones. Brain Res. 371, 314 – 318.en_US
dc.identifier.citedreferenceKemp P., Hubscher G., and Hawthorne J. N. ( 1959 ) A liver phos-pholipase hydrolysing phosphoinositides. Biochim. Biophys. Acta 31, 585 – 586.en_US
dc.identifier.citedreferenceKendall D. A. and Nahorski S. R. ( 1984 ) Inositol phospholipid hydrolysis in rat cerebral cortical slices: II. Calcium requirement. J. Neurochem. 42, 1388 – 1394.en_US
dc.identifier.citedreferenceKendall D. A. and Nahorski S. R. ( 1985a ) Dihydropyridine calcium channel activators and antagonists influence depolarization-evoked inositol phospholipid hydrolysis in brain. Eur. J. Phar-macol. 115, 31 – 36.en_US
dc.identifier.citedreferenceKendall D. A. and Nahorski S. R. ( 1985b ) 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: pharmacological characterization and effects of anti-depressants. J. Pharmacol. Exp. Ther. 233, 473 – 479.en_US
dc.identifier.citedreferenceKendall D. A., Brown E., and Nahorski S. R. ( 1985 ) Α 1 -Adrenocep-tor-mediated inositol phospholipid hydrolysis in rat cerebral cortex: relationship between receptor occupancy and response and effects of denervation. Eur. J. Pharmacol. 114, 41 – 52.en_US
dc.identifier.citedreferenceLabarca R., Janowsky A., Patel J., and Paul S. M. ( 1984 ) Phorbol esters inhibit agonist-induced [ 3 H]inositol-1-phosphate accumulation in rat hippocampal slices. Biochem. Biophys. Res. Commun. 123, 703 – 709.en_US
dc.identifier.citedreferenceLakshmanan J. ( 1978 ) Nerve growth factor induced phosphatidylinositol turnover effect of 6-hydroxydopamine treatment. FEBS Lett. 92, 159 – 162.en_US
dc.identifier.citedreferenceLakshmanan J. ( 1979 ) Post-synaptic PI-effect of nerve growth factor in rat superior cervical ganglia. J. Neurochem. 32, 1599 – 1601.en_US
dc.identifier.citedreferenceLazareno S., Kendall D. A., and Nahorski S. R. ( 1985 ) Pirenzepine indicates heterogeneity of muscarinic receptors linked to cerebral inositol phospholipid metabolism. Neuropharmacology 24, 593 – 595.en_US
dc.identifier.citedreferenceLeeb-Lundberg L. M. F., Cotecchia S., Lomasney J. W., De Ber-nadis J. F., Lefkowitz R. J., and Caron M. G. ( 1985 ) Phorbol esters promote Α 1 -adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc. Natl. Acad. Sci. USA 82, 5651 – 5655.en_US
dc.identifier.citedreferenceLitosch I., Wallis C., and Fain J. N. ( 1985 ) 5-Hydroxytryptamine stimulates inositol phosphate production in a cell free system from blowfly salivary glands: evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown. J. Biol. Chem. 260, 5464 – 5471.en_US
dc.identifier.citedreferenceLow M. G. and Finean J. B. ( 1978 ) Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholi-pase C. Biochim. Biophys. Acta 508, 565 – 570.en_US
dc.identifier.citedreferenceLow M. G. and Kincade P. W. ( 1985 ) Phosphatidylinositol is the membrane-anchoring domain of the Thy-1 glycoprotein. Nature 318, 62 – 64.en_US
dc.identifier.citedreferenceLow M. G. and Zilversmit D. B. ( 1980 ) Role of phosphatidylinositol in attachment of alkaline phosphatase to membranes. Biochemistry 19, 3913 – 3918.en_US
dc.identifier.citedreferenceLow M. G., Ferguson M. A. J., Futerman A. H., and Silman I. ( 1986 ) Covalently attached phosphoinositol as a hydrophobic anchor for membrane proteins. TIBS 11, 212 – 214.en_US
dc.identifier.citedreferenceMalenka R. C., Madison D. V., Andrade R., and Nicoll R. A. ( 1986 ) Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons. J. Neurosci. 6, 475 – 480.en_US
dc.identifier.citedreferenceMantyh P. W., Pinnock R. D., Downes C. P., Goedert M., and Hunt S. P. ( 1984 ) Correlation between inositol phospholipid hydrolysis and substance P receptors in rat CNS. Nature 309, 795 – 797.en_US
dc.identifier.citedreferenceMartin T. F. J. ( 1983 ) Thyrotropin releasing hormone rapidly activates the phosphodiester hydrolysis of polyphosphoinositides in GH 3 pituitary cells. J. Biol. Chem. 258, 14816 – 14822.en_US
dc.identifier.citedreferenceMartin T. F. J., Lucas D. O., Bajjalieh S. M., and Kowalchyk J. A. ( 1986 ) Thyrotropin-releasing hormone activates a Ca 2+ -depen-dent polyphosphoinositide phosphodiesterase in permeable GH 3 cells. GTPΓS potentiation by a cholera and pertussis toxin-insensitive mechanism. J. Biol. Chem. 261, 2918 – 2927.en_US
dc.identifier.citedreferenceMasters S. B., Harden T. K., and Brown J. H. ( 1984 ) Relationships between phosphoinositide and calcium responses to muscarinic agonists in 1321N1 astrocytoma cells. Mol. Pharmacol. 26, 149 – 155.en_US
dc.identifier.citedreferenceMcllwain H. ( 1985 ) In the beginning: to celebrate 20 years of the International Society for Neurochemistry (ISN). J. Neuro-chem. 45, 1 – 10.en_US
dc.identifier.citedreferenceMcKinney M., Stenstrom S., and Richelson E. ( 1985 ) Muscarinic responses and binding in a murine neuroblastoma clone (N1E-115). Mediation of separate responses by high affinity and low affinity agonist-receptor conformations. Mol. Pharmacol. 27, 223 – 235.en_US
dc.identifier.citedreferenceMeiri K. F., Pfenninger K. H., and Willard M. B. ( 1986 ) Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc. Natl. Acad. Sci. USA 83, 3537 – 3541.en_US
dc.identifier.citedreferenceMinneman K. P. and Johnson R. D. ( 1984 ) Characterization of alpha-1 adrenergic receptors linked to [ 3 H]inositol metabolism in rat cerebral cortex. J. Pharmacol. Exp. Ther. 230, 317 – 323.en_US
dc.identifier.citedreferenceMinneman K. P. and Johnson R. D. ( 1986 ) Α 1 -Adrenergic receptors linked to inositol phosphate and cyclic AMP accumulation in rat brain (Abstr), in Abstracts of the Sixth European Society of Neurochemistry Meeting, p. 103. European Society of Neurochemistry, Prague.en_US
dc.identifier.citedreferenceMohd Adnan, N. A. and Hawthorne J. N. ( 1981 ) Phosphatidylinositol labeling in response to activation of muscarinic receptors - in bovine adrenal medulla. J. Neurochem. 36, 1858 – 1860.en_US
dc.identifier.citedreferenceMolina, Y Vedia L. M. and Lapetina E. G. ( 1986 ) Phorbol 12, 13-dibutyrate and 1-oleyl-2-acetyldiacyl-glycerol stimulate inositol trisphosphate dephosphorylation in human platelets. J. Biol. Chem. 261, 10493 – 10495.en_US
dc.identifier.citedreferenceMori T., Taki Y., Yu B., Takabashi J., Nishizuka Y., and Fujikura T. ( 1982 ) Specificity of fatty acyl moieties of diacylglycerol for the activation of calcium-activated, phospholipid dependent protein kinase. J. Biochem. (Tokyo) 91, 427 – 431.en_US
dc.identifier.citedreferenceNahorski S. R., Kendall D. A., and Batty I. ( 1986 ) Receptors and phosphoinositide metabolism in the central nervous system. Biochem. Pharmacol. 35, 2447 – 2453.en_US
dc.identifier.citedreferenceNakahata N., Martin M. W., Hughes A. R., Hepler J. R., and Harden T. K. ( 1986 ) H 1 -histamine receptors on human astrocytoma cells. Mol. Pharmacol. 29, 188 – 195.en_US
dc.identifier.citedreferenceNelson R. B. and Routtenberg A. ( 1985 ) Characterization of protein Fl (47 kDa, 4.5 pI): a kinase C substrate directly related to neural plasticity. Exp. Neurol. 89, 213 – 224.en_US
dc.identifier.citedreferenceNicchitta C. V. and Williamson J. R. ( 1986 ) Cyclic nucleotide regulation of inositol lipid metabolism in rat cerebral cortex. Fed. Proc. 45, 1827.en_US
dc.identifier.citedreferenceNicoletti F., Meek J. L., Chuang D. M., Iodarola M., Roth B. L., and Costa E. ( 1985 ) Ibotenic acid stimulates inositol phospholipid turnover in rat hippocampal slices: an effect mediated by “APB-sensitive” receptors. Fed. Proc. 44, Abstr 480.en_US
dc.identifier.citedreferenceNicoletti F., Meek J. L., Iadarola M. J., Chuang D. M., Roth B. L., and Costa E. ( 1986a ) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem. 46, 40 – 46.en_US
dc.identifier.citedreferenceNicoletti F., Iadarola M. J., Wroblewski J. T., and Costa E. ( 1986b ) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with Α 1 -adrenoceptors. Proc. Natl. Acad. Sci. US. 83, 1931 – 1935.en_US
dc.identifier.citedreferenceNicoletti F., Wroblewski J. T., Novelli A., Alho H., Guidotti A., and Costa E. ( 1986c ) The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J. Neurosci. 6, 1905 – 1911.en_US
dc.identifier.citedreferenceNishizuka Y. ( 1984 ) Turnover of inositol phospholipids and signal transduction. Science 225, 1365 – 1370.en_US
dc.identifier.citedreferenceNishizuka Y. ( 1986 ) Studies and perspectives of protein kinase C. Science 233, 305 – 312.en_US
dc.identifier.citedreferenceOhsako S. and Deguchi T. ( 1983 ) Phosphatidic acid mimicks the muscarinic actions of acetylcholine in cultured bovine chro-maffin cells. FEBS Lett. 152, 62 – 66.en_US
dc.identifier.citedreferenceOlianas M. C., Onali, P., Neff, N. H., and Costa E. ( 1983 ) Adenylate cyclase activity of synaptic membranes from rat striatum. Inhibition by muscarinic receptor agonists. Mol. Pharmacol. 23, 393 – 398.en_US
dc.identifier.citedreferenceOrellana S. A., Solski P. A., and Brown J. H. ( 1985 ) Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells. J. Biol. Chem. 260, 5236 – 5239.en_US
dc.identifier.citedreferenceOron Y., Dascal N., Natller E., and Lupu M. ( 1985 ) Inositol 1,4,5-trisphosphate mimics muscarinic responses in Xenopus oo-cytes. Nature 313, 141 – 143.en_US
dc.identifier.citedreferenceOsugi T., Uchida S., Imaizumi T., and Yoshida H. ( 1986 ) Bradyki-nin-induced intracellular Ca 2+ elevation in neuroblastoma × glioma hybrid NG108–15 cells: relationship to the action of inositol phospholipids metabolites. Brain Res. 379, 84 – 89.en_US
dc.identifier.citedreferencePalmano-K P., Whiting P. H., and Hawthorne J. N. ( 1977 ) Free and lipid myoinositol in tissues from rats with acute and less severe streptozotocin-induced diabetes. Biochem. J. 167, 229 – 235.en_US
dc.identifier.citedreferencePearce B., Cambray-Deakin M., Morrow C., Grimble J., and Murphy S. ( 1985 ) Activation of muscarinic and of Α 1 -adrenergic receptors on astrocytes results in the accumulation of inositol phosphates. J. Neurochem. 45, 1534 – 1540.en_US
dc.identifier.citedreferencePeroutka S. J. and Snyder S. H. ( 1980 ) Long-term antidepressant treatment lowers spiroperidol labelled serotonin receptor binding. Science 210, 88 – 90.en_US
dc.identifier.citedreferencePetzold G. L. and Agranoff B. W. ( 1965 ) Studies on the formation of CDP-diglyceride. Fed. Proc. 24, 476.en_US
dc.identifier.citedreferencePetzold G. L. and Agranoff B. W. ( 1967 ) The biosynthesis of cytidine diphosphate diglyceride by embryonic chick brain. J. Biol. Chem. 242, 1187 – 1191.en_US
dc.identifier.citedreferencePizer F. L. and Ballou C. E. ( 1959 ) Studies on myo-inositol phosphates of natural origin. J. Am. Chem. Soc. 81, 915 – 921.en_US
dc.identifier.citedreferencePrentki M., Biden T. J., Janjic D., Irvine R. F., Berridge M. J., and Wollheim C. B. ( 1984 ) Rapid mobilization of Ca 2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature 309, 562 – 564.en_US
dc.identifier.citedreferenceRenshaw P. F., Joseph N. E., and Leigh, J. S. ( 1986 ) Chronic dietary lithium induces increased levels of myo-inositol-1-phosphatase activity in rat cerebral cortex homogenates. Brain Res. 380, 401 – 404.en_US
dc.identifier.citedreferenceRichelson E. and Nelson A. ( 1984a ) Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro. J. Pharmacol. Exp. Ther. 230, 94 – 102.en_US
dc.identifier.citedreferenceRichelson E. and Nelson A. ( 1984b ) Antagonism by neuroleptics of neurotransmitter receptors of normal human brain in vitro. Eur. J. Pharmacol. 103, 197 – 204.en_US
dc.identifier.citedreferenceRodbell M. ( 1985 ) Programmable messengers: a new theory of hormone action. Trends Biochem. Sci. 11, 461 – 464.en_US
dc.identifier.citedreferenceRole L. W. and Perlman R. L. ( 1983 ) Both nicotinic and muscarinic receptors mediate catecholamine secretion by isolated guinea-pig chromaffin cells. Neuroscience 10, 979 – 985.en_US
dc.identifier.citedreferenceRoss T. S. and Majerus P. W. ( 1986 ) Isolation of d-myo-inositol 1:2-cyclic phosphate 2-inositolphosphohydrolase from human placenta. J. Biol. Chem. 261, 11119 – 11123.en_US
dc.identifier.citedreferenceSaltiel A. R. and Cuatrecasas P. ( 1986 ) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc. Natl. Acad. Sci. USA 83, 5793 – 5797.en_US
dc.identifier.citedreferenceSaltiel A. R., Fox J. A., Sherline P., and Cuatrecasas P. ( 1986 ) Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science 233, 967 – 972.en_US
dc.identifier.citedreferenceSchmidt S. Y. ( 1983a ) Light- and cytidine-dependent phosphatidyl-inositol synthesis in photoreceptor cells of the rat. J. Cell Biol. 97, 832 – 837.en_US
dc.identifier.citedreferenceSchmidt S. Y. ( 1983b ) Phosphatidylinositol synthesis and phos-phorylation are enhanced by light in rat retinas. J. Biol. Chem. 258, 6863 – 6868.en_US
dc.identifier.citedreferenceSchoepp D. D., Knepper S. M., and Rutledge C. O. ( 1984 ) Norepi-nephrine stimulation of phosphoinositide hydrolysis in rat cerebral cortex is associated with the alpha-adrenoceptor. J. Neurochem. 43, 1758 – 1761.en_US
dc.identifier.citedreferenceSherman W. R., Stewart M. A., Jurien M. M., and Goodwin S. L. ( 1968 ) The measurement of myo-inositol, myoinosose-2 and scyllo-inositol in mammalian tissues. Biochim. Biophys. Acta 158, 197 – 205.en_US
dc.identifier.citedreferenceSiman R. G. and Klein W. L. ( 1981 ) Specificity of muscarinic ace-tylcholine receptor regulation by receptor activity. J. Neurochem. 37, 1099 – 1108.en_US
dc.identifier.citedreferenceSimmonds S. H. and Strange P. G. ( 1985 ) Inhibition of inositol phospholipid breakdown by D 2 dopamine receptors in dissociated bovine anterior pituitary cells. Neurosci. Lett. 60, 267 – 272.en_US
dc.identifier.citedreferenceSkene J. H. P. and Willard M. ( 1981 ) Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells. J. Cell. Biol. 89, 86 – 95.en_US
dc.identifier.citedreferenceSladeczek F., Pin J.-P., Recasens M., Bockaert J., and Weiss S. ( 1985 ) Glutamate stimulates inositol phosphate formation in striatal neurons. Nature 317, 717 – 719.en_US
dc.identifier.citedreferenceSmith T. L. and Yamamura H. I. ( 1985 ) Carbachol stimulation of phosphatidic acid synthesis: competitive inhibition by piren-zepine in synaptosomes from rat cerebral cortex. Biochem. Biophys. Res. Commun. 130, 282 – 285.en_US
dc.identifier.citedreferenceSnider R. M., Kyes S. A., Seguin E. B., and Agranoff B. W. ( 1984 ) Inositol lipid labeling produced by muscarinic, histamine H, and thrombin in stimulation in neuroblastoma cells. (Abstr) Soc. Neurosci. Abstr. 10, 276.en_US
dc.identifier.citedreferenceSnider R. M., Forray C., Pfenning M., and Richelson E. ( 1986 ) Neurotensin stimulates inositol phospholipid metabolism and calcium mobilization in murine neuroblastoma clone N1E-115. J. Neurochem. 47, 1214 – 1218.en_US
dc.identifier.citedreferenceSnider R. M., Fisher S. K., and Agranoff B. W. ( 1987 ) Inositide-linked second messengers in the central nervous system, in Psychopharmacology: The Third Generation of Progress ( Simpson H. H., eds ), in press. Raven Press, New York.en_US
dc.identifier.citedreferenceSpat A., Bradford P. G., McKinney J. S., Rubin R. P., and Putney, J. W. ( 1986a ) A saturable receptor for 32 P-inositol-1,4,5-trisphosphate in hepatocytes and neutrophils. Natur. 319, 514 – 516.en_US
dc.identifier.citedreferenceSpat A., Fabiato A., and Rubin R. P. ( 1986b ) Binding of inositol trisphosphate by a liver microsomal fraction. Biochem. J. 233, 929 – 932.en_US
dc.identifier.citedreferenceSpector R. and Lorenzo A. V. ( 1975 ) myo-Inositol transport in the central nervous system. Am. J. Physiol. 228, 1510 – 1518.en_US
dc.identifier.citedreferenceStephens L. R. and Logan S. D. ( 1986 ) Arginine-vasopressin stimulates inositol phospholipid metabqlism in rat hippocampus. J. Neurochem. 46, 649 – 651.en_US
dc.identifier.citedreferenceStoehr S. J., Smolen J. E., Holz R. W., and Agranoff B. W. ( 1986 ) Inositol trisphosphate mobilizes intracellular calcium in per-meabilized adrenal chromaffin cells. J. Neurochem. 46, 637 – 640.en_US
dc.identifier.citedreferenceStreb H., Irvine R. F., Berridge M. J., and Schulz I. ( 1983 ) Release of Ca 2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67 – 69.en_US
dc.identifier.citedreferenceSubramanian N., Whitmore W. L., Seidler F. J., and Slotkin T. A. ( 1980 ) Histamine stimulates brain phospholipid turnover through a direct H-1 receptor-mediated mechanism. Life Sci. 27, 1315 – 1319.en_US
dc.identifier.citedreferenceThomas A. P., Alexander J., and Williamson J. R. ( 1984 ) Relationship between inositol polyphosphate production and the increase of cytosolic free Ca 2+ induced by vasopressin in isolated hepatocytes. J. Biol. Chem. 259, 5574 – 5584.en_US
dc.identifier.citedreferenceTower D. B. ( 1987 ) The American Society for Neurochemistry (ASN): antecedents, founding, and early years. J. Neurochem. 48, 313 – 326.en_US
dc.identifier.citedreferenceTraynor A. E., Schubert D., and Allen W. R. ( 1982 ) Alterations of lipid metabolism in response to nerve growth factors. J. Neurochem. 39, 1677 – 1683.en_US
dc.identifier.citedreferenceVan Dongen C., Zwiers H., Oestreicher A. B., and Gispen W. H. ( 1985 ) ACTH, phosphoprotein B-50, and polyphosphoinosi-tide metabolism in rat brain membranes, in Phospholipids in the Nervous System, Vol. 2 : Physiological Roles ( Porcellati, G., eds ), pp. 49 – 59. Raven Press, New York.en_US
dc.identifier.citedreferenceVan Rooijen L. A. A., Seguin E. B., and Agranoff B. W. ( 1983 ) Phosphodiesteratic breakdown of endogenous polyphospho-inositides in nerve ending membranes. Biochem. Biophys. Res. Commun. 112, 919 – 926.en_US
dc.identifier.citedreferenceVan Rooijen L. A. A., Hajra A. K., and Agranoff B. W. ( 1985 ) Tetraenoic species are conserved in muscarinically enhanced inositide turnover. J. Neurochem. 44, 540 – 543.en_US
dc.identifier.citedreferenceVicentini L. M., Ambrosini A., Di Virgilio F., Pozzan T., and Mel-dolesi J. ( 1985 ) Muscarinic receptor-induced phosphoinositide hydrolysis at resting cytosolic Ca 2+ concentration in PC12 cells. J. Cell Biol. 100, 1330 – 1333.en_US
dc.identifier.citedreferenceVickroy T., Watson M., Yamamura H. I., and Roeske W. R. ( 1984 ) Agonist binding to multiple muscarinic receptors. Fed. Proc. 43, 2785 – 2790.en_US
dc.identifier.citedreferenceWatson M., Vickroy T. W., Roeske W. R., and Yamamura H. I. ( 1985 ) Functional and biochemical basis for multiple muscarinic acetylcholine receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry 9, 569 – 574.en_US
dc.identifier.citedreferenceWatson S. P. and Downes C. P. ( 1983 ) Substance P induced hydrolysis of inositol phospholipids in guinea-pig ileum and rat hypo-thalamus. Eur. J. Pharmacol. 93, 245 – 253.en_US
dc.identifier.citedreferenceWhiting P. H., Palmano K. P., and Hawthorne J. N. ( 1977 ) Enzymes of myo-inositol and inositol lipid metabolism in rats with streptozotocin-induced diabetes. Biochem. J. 179, 549 – 553.en_US
dc.identifier.citedreferenceWilliamson J. R. ( 1986 ) Role of inositol lipid breakdown in the generation of intracellular signals. Hypertension 8 ( Suppl II ), 140 – 156.en_US
dc.identifier.citedreferenceWilson D. B., Bross T. E., Hofmann S. L., and Majerus P. W. ( 1984 ) Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes. J. Biol. Chem. 259, 11718 – 11724.en_US
dc.identifier.citedreferenceWilson D. B., Connolly T. M., Bross T. E., Majerus P. W., Sherman W. R., Tyler A., Rubin L. J., and Brown J. E. ( 1985a ) Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C. Physiological effects in permeabilized platelets and Limulus photore-ceptor cells. J. Biol. Chem. 260, 13496 – 13501.en_US
dc.identifier.citedreferenceWilson D. B., Neufeld E. J., and Majerus P. W. ( 1985b ) Phospho-inositide interconversion in thrombin-stimulated human platelets. J. Biol. Chem. 260, 1046 – 1051.en_US
dc.identifier.citedreferenceWoelk H., Kanig K., and Peiler-Ichikawa K. ( 1974 ) Incorporation of 32 P into the phospholipids of neuronal and glial cell enriched fractions isolated from rabbit cerebral cortex. J. Neurochem. 23, 1057 – 1063.en_US
dc.identifier.citedreferenceYang J. C., Chang P. C., Fujitaki J. M., Chiu K. C., and Smith R. A. ( 1986 ) Covalent linkage of phospholipid to myelin basic protein: identification of phosphatidylinositol bisphosphate as the attached phospholipid. Biochemistry 25, 2677 – 2681.en_US
dc.identifier.citedreferenceYano K., Higashida H., Inoue R., and Nozawa Y. ( 1984 ) Bradyki-nin-induced rapid breakdown of phosphatidylinositol 4,5-bis-phosphate in neuroblastoma × glioma hybrid NG 108–15 cells. J. Biol. Chem. 259, 10201 – 10207.en_US
dc.identifier.citedreferenceYoung P. W., Bicknell R. J., and Schofield J. G. ( 1979 ) Acetylcho-line stimulates growth hormone secretion, phosphatidylinositol labelling, 45 Ca 2+ efflux and cyclic GMP accumulation in bovine anterior pituitary cells. J. Endocrinol. 80, 203 – 213.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.