Nerve growth factor inhibits PC12 cell PDE 2 phosphodiesterase activity and increases PDE 2 binding to phosphoproteins
dc.contributor.author | Bentley, John Kelley | en_US |
dc.contributor.author | Juilfs, Dawn M. | en_US |
dc.contributor.author | Uhler, Michael D. | en_US |
dc.date.accessioned | 2010-04-01T15:45:00Z | |
dc.date.available | 2010-04-01T15:45:00Z | |
dc.date.issued | 2001-02 | en_US |
dc.identifier.citation | Bentley, J. Kelley; Juilfs, Dawn M.; Uhler, Michael D. (2001). "Nerve growth factor inhibits PC12 cell PDE 2 phosphodiesterase activity and increases PDE 2 binding to phosphoproteins." Journal of Neurochemistry 76(4): 1252-1263. <http://hdl.handle.net/2027.42/66241> | en_US |
dc.identifier.issn | 0022-3042 | en_US |
dc.identifier.issn | 1471-4159 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/66241 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11181844&dopt=citation | en_US |
dc.format.extent | 787032 bytes | |
dc.format.extent | 3110 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Science Ltd | en_US |
dc.rights | International Society for Neurochemistry | en_US |
dc.subject.other | 3′ | en_US |
dc.subject.other | 5′-Cyclic Nucleotide Phosphodiesterase | en_US |
dc.subject.other | Cyclic AMP | en_US |
dc.subject.other | Cyclic GMP | en_US |
dc.subject.other | Nerve Growth Factor | en_US |
dc.subject.other | PC12 Cells | en_US |
dc.subject.other | PDE 2 | en_US |
dc.subject.other | Phosphoprotein | en_US |
dc.title | Nerve growth factor inhibits PC12 cell PDE 2 phosphodiesterase activity and increases PDE 2 binding to phosphoproteins | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Neurosciences | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Pharmacology, The University of Michigan, Ann Arbor, Michigan, USA | en_US |
dc.contributor.affiliationum | † Mental Health Research Institute, The University of Michigan, Ann Arbor, Michigan, USA | en_US |
dc.contributor.affiliationum | † Pfizer Global Research, Ann Arbor Laboratories, Ann Arbor, Michigan, USA | en_US |
dc.contributor.affiliationum | § Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan, USA | en_US |
dc.identifier.pmid | 11181844 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/66241/1/j.1471-4159.2001.00133.x.pdf | |
dc.identifier.doi | 10.1046/j.1471-4159.2001.00133.x | en_US |
dc.identifier.source | Journal of Neurochemistry | en_US |
dc.identifier.citedreference | Baizer L. & Weiner N. ( 1985 ) Nerve growth factor treatment enhances nicotine-stimulated dopamine release and increases in cyclic adenosine 3′ : 5′-monophosphate levels in PC12 cell cultures. J. Neurosci. 5, 1176 – 1179. | en_US |
dc.identifier.citedreference | Bentley J. K., Kadlecek A., Sherbert C. H., Seger D., Sonnenburg W. K., Charbonneau H., Novack J. P. & Beavo J. A. ( 1992 ) Molecular cloning of cDNA encoding a ‘63’-kDa calmodulin-stimulated phosphodiesterase from bovine brain. J. Biol. Chem. 267, 18676 – 18682. | en_US |
dc.identifier.citedreference | Boulter J. & Gardner P. D. ( 1989 ) Practical approaches to molecular cloning of nicotinic acetylcholine receptor genes. In: Methods in Neurosciences, Vol. 1, Genetic Probes ( Conn P. M., ed.), pp. 328 – 363, Academic Press, Orlando, FL. | en_US |
dc.identifier.citedreference | Chang Y. H., Conti M., Lee Y. C., Lai H. L., Ching Y. H. & Chern Y. ( 1997 ) Activation of phosphodiesterase IV during desensitization of the A2A adenosine receptor-mediated cyclic AMP response in rat pheochromocytoma (PC12) cells. J. Neurochem. 69, 1300 – 1309. | en_US |
dc.identifier.citedreference | Charbonneau H., Prusti R. K., LeTrong H., Sonnenburg W. K., Mullaney P. J., Walsh K. A. & Beavo J. A. ( 1990 ) Identification of a noncatalytic cGMP-binding domain conserved in both the cGMP-stimulated and photoreceptor cyclic nucleotide phosphodiesterases. Proc. Natl Acad. Sci. USA 87, 288 – 292. | en_US |
dc.identifier.citedreference | Eckly-Michel A. E., Le Bec A. & Lugnier C. ( 1997 ) Chelerythrine, a protein kinase C inhibitor, interacts with cyclic nucleotide phosphodiesterases. Eur. J. Pharmacol. 324, 85 – 88. | en_US |
dc.identifier.citedreference | Gordon J. A. ( 1991 ) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol. 201, 477 – 482. | en_US |
dc.identifier.citedreference | Greene L. A. & Tischler A. S. ( 1976 ) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl Acad. Sci. USA 73, 2424 – 2428. | en_US |
dc.identifier.citedreference | Greene L. A., Aletta J. M., Rechenstein A. & Green S. H. ( 1987 ) PC12 pheochromocytoma cells: culture, nerve growth factor treatment, and experimental exploitation. Methods Enzymol. 147B, 207 – 216. | en_US |
dc.identifier.citedreference | Grewal S. G., York R. D. & Stork P. J. S. ( 1999 ) Extracellular-signal-regulated kinase signaling in neurons. Curr. Opin. Neurobiol. 9, 544 – 553. | en_US |
dc.identifier.citedreference | Gunning P. W., Landreth G. E., Bothwell M. A. & Shooter E. M. ( 1981 ) Differential and synergistic actions of nerve growth factor and cyclic AMP in PC12 cells. J. Cell. Biol. 89, 240 – 245. | en_US |
dc.identifier.citedreference | Hall K. U., Collins S. P., Gamm D. M., Massa E., DePaoli-Roach A. A. & Uhler M. D. ( 1999 ) Phosphorylation-dependent inhibition of protein phosphatase-1 by G-substrate. J. Biol. Chem. 274, 3485 – 3495. | en_US |
dc.identifier.citedreference | Hamilton S. E., Prusti R. K., Bentley J. K., Beavo J. A. & Hurley J. B. ( 1993 ) Affinities of bovine photoreceptor cGMP phosphodiesterases for rod and cone inhibitory subunits. FEBS Lett. 318, 157 – 161. | en_US |
dc.identifier.citedreference | Heidemann S. R., Joshi H. C., Schechter A., Fletcher J. R. & Bothwell M. ( 1985 ) Synergistic effects of cyclic AMP and nerve growth factor on neurite outgrowth and microtubule stability of PC12 cells. J. Cell. Biol. 100, 916 – 927. | en_US |
dc.identifier.citedreference | Hindley S., Juurlink B. H. J., Gysbers J. W., Middlemiss P. J., Herman M. A. R. & Rathbone M. P. ( 1997 ) Nitric oxide donors enhance neurotrophin-induced outgrowth through a cGMP-dependent mechanism. J. Neurosci. Res. 47, 427 – 439. | en_US |
dc.identifier.citedreference | Houslay M. D. & Kolch W. ( 2000 ) Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling. Mol. Pharmacol. 58, 659 – 668. | en_US |
dc.identifier.citedreference | Juilfs D. M., Fulle H. J., Zhao A. Z., Houslay M. D., Garbers D. L. & Beavo J. A. ( 1997 ) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc. Natl Acad. Sci. USA 94, 3388 – 3395. | en_US |
dc.identifier.citedreference | Kaplan D. R. & Miller F. D. ( 2000 ) Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381 – 391. | en_US |
dc.identifier.citedreference | Kawasaki H., Springett G. M., Mochizuki N., Toki S., Nakaya M., Matsuda M., Housman D. E. & Graybiel A. M. ( 1998 ) A family of cAMP-binding proteins that directly activate Rap1. Science 282, 2275 – 2279. | en_US |
dc.identifier.citedreference | Knipper M., Beck A., Rylett J. & Breer H. ( 1993 ) Neurotrophin induced cAMP and IP3 responses in PC12 cells. Different pathways. FEBS Lett. 324, 147 – 152. | en_US |
dc.identifier.citedreference | Liu H., Force T. & Bloch K. D. ( 1997 ) Nerve growth factor decreases soluble guanylate cyclase in rat pheochromocytoma PC12 cells. J. Biol. Chem. 272, 6038 – 6043. | en_US |
dc.identifier.citedreference | Murashima S., Tanaka T., Hockman S. & Manganiello V. ( 1990 ) Characterization of particulate cyclic nucleotide phosphodiesterases from bovine brain: purification of a distinct cGMP-stimulated isoenzyme. Biochemistry 29, 5285 – 5292. | en_US |
dc.identifier.citedreference | Nichols M. R. & Morimoto B. H. ( 2000 ) Differential inhibition of multiple cAMP phosphodiesterase isozymes by isoflavones and tyrphostins. Mol. Pharmacol. 57, 738 – 745. | en_US |
dc.identifier.citedreference | Phung Y. T., Bekker J. M., Hallmark O. G. & Black S. M. ( 1999 ) Both neuronal NO synthase and nitric oxide are required for PC12 cell differentiation: a cGMP independent pathway. Mol. Brain Res. 64, 165 – 178. | en_US |
dc.identifier.citedreference | Podzuweit T., Nennstiel P. & Muller A. ( 1995 ) Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell. Signal. 7, 733 – 738. | en_US |
dc.identifier.citedreference | Repaske D. R., Corbin J. G., Conti M. & Goy M. F. ( 1993 ) A cyclic GMP stimulated cyclic nucleotide phosphodiesterase gene is highly expressed in the limbic system of rat brain. Neuroscience 56, 673 – 686. | en_US |
dc.identifier.citedreference | Riccio A., Ahn S., Davenport C. M., Blendy J. A. & Ginty D. D. ( 1999 ) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358 – 2361. | en_US |
dc.identifier.citedreference | de Rooij J., Zwartkruis F. J., Verheijen M. H., Cool R. H., Nijman S. M., Wittinghofer A. & Bos J. L. ( 1998 ) Epac is a Rap1 guanine nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474 – 477. | en_US |
dc.identifier.citedreference | Rosman G. J., Martins T. J., Sonnenburg W. K., Beavo J. A., Ferguson K. & Loughney K. ( 1997 ) Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3′,5′-cyclic nucleotide phosphodiesterase. Gene 191, 89 – 95. | en_US |
dc.identifier.citedreference | Sadhu K., Hensley K., Florio V. A. & Wolda S. ( 1999 ) Differential expression of the cyclic GMP- stimulated phosphodiesterase PDE 2A in human venous and capillary endothelial cells. J. Histochem. Cytochem. 47, 895 – 905. | en_US |
dc.identifier.citedreference | Schultz J., Copley R. R., Doerks T., Ponting C. P. & Bork P. ( 2000 ) SMART: a Web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231 – 234. | en_US |
dc.identifier.citedreference | Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J. & Klenk D. C. ( 1985 ) Measurement of protein using bichinchoninic acid. Anal. Biochem. 175, 231 – 237. | en_US |
dc.identifier.citedreference | Soderling S. H. & Beavo J. A. ( 2000 ) Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr. Opin. Cell Biol. 12, 174 – 179. | en_US |
dc.identifier.citedreference | Sonnenburg W. K., Mullaney P. J. & Beavo J. A. ( 1991 ) Molecular cloning of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase cDNA. Identification and distribution of isozyme variants. J. Biol. Chem. 266, 17655 – 17661. | en_US |
dc.identifier.citedreference | Stroop S. D. & Beavo J. A. ( 1991 ) Structure and function studies of the cGMP-stimulated phosphodiesterase. J. Biol. Chem. 266, 23802 – 23809. | en_US |
dc.identifier.citedreference | Studier F. W., Rosenberg A. H., Dunn J. J. & Dubendorff J. W. ( 1990 ) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60 – 89. | en_US |
dc.identifier.citedreference | Whalin M. E., Strada S. J. & Thompson W. J. ( 1988 ) Purification and partial characterization of membrane-associated type II (cGMP-activatable) cyclic nucleotide phosphodiesterase from rabbit brain. Biochim. Biophys. Acta 972, 79 – 94. | en_US |
dc.identifier.citedreference | Whalin M. E., Scammell J. G., Strada S. J. & Thompson W. J. ( 1991 ) Phosphodiesterase II, the cGMP-activatable cyclic nucleotide phosphodiesterase, regulates cyclic AMP metabolism in PC12 cells. Mol. Pharmacol. 39, 711 – 717. | en_US |
dc.identifier.citedreference | Wilson R. K., Chen C. & Hood L. ( 1990 ) Optimization of asymmetric polymerase chain reaction for rapid fluorescent DNA sequencing. Biotechnology 8, 184 – 189. | en_US |
dc.identifier.citedreference | Yan C., Zhao A. Z., Bentley J. K. & Beavo J. A. ( 1996 ) The calmodulin-dependent phosphodiesterase gene PDE 1C encodes several functionally different splice variants in a tissue specific manner. J. Biol. Chem. 271, 25699 – 25706. | en_US |
dc.identifier.citedreference | Yang Q., Paskind M., Bolger G., Thompson W. J., Repaske D. R., Cutler L. S. & Epstein P. M. ( 1994 ) A novel cyclic GMP stimulated phosphodiesterase from rat brain. Biochem. Biophys. Res. Commun. 205, 1850 – 1858. | en_US |
dc.identifier.citedreference | Yao H., York R. D., Misra-Press. A., Carr D. W. & Stork P. J. S. ( 1998 ) The cyclic adenosine monophosphate-dependent protein kinase (PKA) is required for sustained activation of mitogen-activated kinases and gene expression by nerve growth factor. J. Biol. Chem. 273, 8240 – 8247. | en_US |
dc.identifier.citedreference | York R. D., Yao H., Dillon T., Ellig C. L., Eckert S. P., McClesky E. W. & Stork P. J. S. ( 1998 ) Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622 – 626. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.