Show simple item record

Nerve growth factor inhibits PC12 cell PDE 2 phosphodiesterase activity and increases PDE 2 binding to phosphoproteins

dc.contributor.authorBentley, John Kelleyen_US
dc.contributor.authorJuilfs, Dawn M.en_US
dc.contributor.authorUhler, Michael D.en_US
dc.date.accessioned2010-04-01T15:45:00Z
dc.date.available2010-04-01T15:45:00Z
dc.date.issued2001-02en_US
dc.identifier.citationBentley, J. Kelley; Juilfs, Dawn M.; Uhler, Michael D. (2001). "Nerve growth factor inhibits PC12 cell PDE 2 phosphodiesterase activity and increases PDE 2 binding to phosphoproteins." Journal of Neurochemistry 76(4): 1252-1263. <http://hdl.handle.net/2027.42/66241>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66241
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11181844&dopt=citationen_US
dc.format.extent787032 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rightsInternational Society for Neurochemistryen_US
dc.subject.other3′en_US
dc.subject.other5′-Cyclic Nucleotide Phosphodiesteraseen_US
dc.subject.otherCyclic AMPen_US
dc.subject.otherCyclic GMPen_US
dc.subject.otherNerve Growth Factoren_US
dc.subject.otherPC12 Cellsen_US
dc.subject.otherPDE 2en_US
dc.subject.otherPhosphoproteinen_US
dc.titleNerve growth factor inhibits PC12 cell PDE 2 phosphodiesterase activity and increases PDE 2 binding to phosphoproteinsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pharmacology, The University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationum† Mental Health Research Institute, The University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationum† Pfizer Global Research, Ann Arbor Laboratories, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationum§ Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid11181844en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66241/1/j.1471-4159.2001.00133.x.pdf
dc.identifier.doi10.1046/j.1471-4159.2001.00133.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBaizer L. & Weiner N. ( 1985 ) Nerve growth factor treatment enhances nicotine-stimulated dopamine release and increases in cyclic adenosine 3′ : 5′-monophosphate levels in PC12 cell cultures. J. Neurosci. 5, 1176 – 1179.en_US
dc.identifier.citedreferenceBentley J. K., Kadlecek A., Sherbert C. H., Seger D., Sonnenburg W. K., Charbonneau H., Novack J. P. & Beavo J. A. ( 1992 ) Molecular cloning of cDNA encoding a ‘63’-kDa calmodulin-stimulated phosphodiesterase from bovine brain. J. Biol. Chem. 267, 18676 – 18682.en_US
dc.identifier.citedreferenceBoulter J. & Gardner P. D. ( 1989 ) Practical approaches to molecular cloning of nicotinic acetylcholine receptor genes. In: Methods in Neurosciences, Vol. 1, Genetic Probes ( Conn P. M., ed.), pp.  328 – 363, Academic Press, Orlando, FL.en_US
dc.identifier.citedreferenceChang Y. H., Conti M., Lee Y. C., Lai H. L., Ching Y. H. & Chern Y. ( 1997 ) Activation of phosphodiesterase IV during desensitization of the A2A adenosine receptor-mediated cyclic AMP response in rat pheochromocytoma (PC12) cells. J. Neurochem. 69, 1300 – 1309.en_US
dc.identifier.citedreferenceCharbonneau H., Prusti R. K., LeTrong H., Sonnenburg W. K., Mullaney P. J., Walsh K. A. & Beavo J. A. ( 1990 ) Identification of a noncatalytic cGMP-binding domain conserved in both the cGMP-stimulated and photoreceptor cyclic nucleotide phosphodiesterases. Proc. Natl Acad. Sci. USA 87, 288 – 292.en_US
dc.identifier.citedreferenceEckly-Michel A. E., Le Bec A. & Lugnier C. ( 1997 ) Chelerythrine, a protein kinase C inhibitor, interacts with cyclic nucleotide phosphodiesterases. Eur. J. Pharmacol. 324, 85 – 88.en_US
dc.identifier.citedreferenceGordon J. A. ( 1991 ) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol. 201, 477 – 482.en_US
dc.identifier.citedreferenceGreene L. A. & Tischler A. S. ( 1976 ) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl Acad. Sci. USA 73, 2424 – 2428.en_US
dc.identifier.citedreferenceGreene L. A., Aletta J. M., Rechenstein A. & Green S. H. ( 1987 ) PC12 pheochromocytoma cells: culture, nerve growth factor treatment, and experimental exploitation. Methods Enzymol. 147B, 207 – 216.en_US
dc.identifier.citedreferenceGrewal S. G., York R. D. & Stork P. J. S. ( 1999 ) Extracellular-signal-regulated kinase signaling in neurons. Curr. Opin. Neurobiol. 9, 544 – 553.en_US
dc.identifier.citedreferenceGunning P. W., Landreth G. E., Bothwell M. A. & Shooter E. M. ( 1981 ) Differential and synergistic actions of nerve growth factor and cyclic AMP in PC12 cells. J. Cell. Biol. 89, 240 – 245.en_US
dc.identifier.citedreferenceHall K. U., Collins S. P., Gamm D. M., Massa E., DePaoli-Roach A. A. & Uhler M. D. ( 1999 ) Phosphorylation-dependent inhibition of protein phosphatase-1 by G-substrate. J. Biol. Chem. 274, 3485 – 3495.en_US
dc.identifier.citedreferenceHamilton S. E., Prusti R. K., Bentley J. K., Beavo J. A. & Hurley J. B. ( 1993 ) Affinities of bovine photoreceptor cGMP phosphodiesterases for rod and cone inhibitory subunits. FEBS Lett. 318, 157 – 161.en_US
dc.identifier.citedreferenceHeidemann S. R., Joshi H. C., Schechter A., Fletcher J. R. & Bothwell   M. ( 1985 ) Synergistic effects of cyclic AMP and nerve growth factor on neurite outgrowth and microtubule stability of PC12 cells. J. Cell. Biol. 100, 916 – 927.en_US
dc.identifier.citedreferenceHindley S., Juurlink B. H. J., Gysbers J. W., Middlemiss P. J., Herman   M. A. R. & Rathbone M. P. ( 1997 ) Nitric oxide donors enhance neurotrophin-induced outgrowth through a cGMP-dependent mechanism. J. Neurosci. Res. 47, 427 – 439.en_US
dc.identifier.citedreferenceHouslay M. D. & Kolch W. ( 2000 ) Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling. Mol. Pharmacol. 58, 659 – 668.en_US
dc.identifier.citedreferenceJuilfs D. M., Fulle H. J., Zhao A. Z., Houslay M. D., Garbers D. L. & Beavo J. A. ( 1997 ) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc. Natl Acad. Sci. USA 94, 3388 – 3395.en_US
dc.identifier.citedreferenceKaplan D. R. & Miller F. D. ( 2000 ) Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381 – 391.en_US
dc.identifier.citedreferenceKawasaki H., Springett G. M., Mochizuki N., Toki S., Nakaya M., Matsuda M., Housman D. E. & Graybiel A. M. ( 1998 ) A family of cAMP-binding proteins that directly activate Rap1. Science 282, 2275 – 2279.en_US
dc.identifier.citedreferenceKnipper M., Beck A., Rylett J. & Breer H. ( 1993 ) Neurotrophin induced cAMP and IP3 responses in PC12 cells. Different pathways. FEBS Lett. 324, 147 – 152.en_US
dc.identifier.citedreferenceLiu H., Force T. & Bloch K. D. ( 1997 ) Nerve growth factor decreases soluble guanylate cyclase in rat pheochromocytoma PC12 cells. J.  Biol. Chem. 272, 6038 – 6043.en_US
dc.identifier.citedreferenceMurashima S., Tanaka T., Hockman S. & Manganiello V. ( 1990 ) Characterization of particulate cyclic nucleotide phosphodiesterases from bovine brain: purification of a distinct cGMP-stimulated isoenzyme. Biochemistry 29, 5285 – 5292.en_US
dc.identifier.citedreferenceNichols M. R. & Morimoto B. H. ( 2000 ) Differential inhibition of multiple cAMP phosphodiesterase isozymes by isoflavones and tyrphostins. Mol. Pharmacol. 57, 738 – 745.en_US
dc.identifier.citedreferencePhung Y. T., Bekker J. M., Hallmark O. G. & Black S. M. ( 1999 ) Both neuronal NO synthase and nitric oxide are required for PC12 cell differentiation: a cGMP independent pathway. Mol. Brain Res. 64, 165 – 178.en_US
dc.identifier.citedreferencePodzuweit T., Nennstiel P. & Muller A. ( 1995 ) Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell. Signal. 7, 733 – 738.en_US
dc.identifier.citedreferenceRepaske D. R., Corbin J. G., Conti M. & Goy M. F. ( 1993 ) A cyclic GMP stimulated cyclic nucleotide phosphodiesterase gene is highly expressed in the limbic system of rat brain. Neuroscience 56, 673 – 686.en_US
dc.identifier.citedreferenceRiccio A., Ahn S., Davenport C. M., Blendy J. A. & Ginty D. D. ( 1999 ) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358 – 2361.en_US
dc.identifier.citedreferencede Rooij J., Zwartkruis F. J., Verheijen M. H., Cool R. H., Nijman S. M., Wittinghofer A. & Bos J. L. ( 1998 ) Epac is a Rap1 guanine nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474 – 477.en_US
dc.identifier.citedreferenceRosman G. J., Martins T. J., Sonnenburg W. K., Beavo J. A., Ferguson   K. & Loughney K. ( 1997 ) Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3′,5′-cyclic nucleotide phosphodiesterase. Gene 191, 89 – 95.en_US
dc.identifier.citedreferenceSadhu K., Hensley K., Florio V. A. & Wolda S. ( 1999 ) Differential expression of the cyclic GMP- stimulated phosphodiesterase PDE 2A in human venous and capillary endothelial cells. J. Histochem. Cytochem. 47, 895 – 905.en_US
dc.identifier.citedreferenceSchultz J., Copley R. R., Doerks T., Ponting C. P. & Bork P. ( 2000 ) SMART: a Web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28, 231 – 234.en_US
dc.identifier.citedreferenceSmith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J. & Klenk D. C. ( 1985 ) Measurement of protein using bichinchoninic acid. Anal. Biochem. 175, 231 – 237.en_US
dc.identifier.citedreferenceSoderling S. H. & Beavo J. A. ( 2000 ) Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr. Opin. Cell Biol. 12, 174 – 179.en_US
dc.identifier.citedreferenceSonnenburg W. K., Mullaney P. J. & Beavo J. A. ( 1991 ) Molecular cloning of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase cDNA. Identification and distribution of isozyme variants. J. Biol. Chem. 266, 17655 – 17661.en_US
dc.identifier.citedreferenceStroop S. D. & Beavo J. A. ( 1991 ) Structure and function studies of the cGMP-stimulated phosphodiesterase. J. Biol. Chem. 266, 23802 – 23809.en_US
dc.identifier.citedreferenceStudier F. W., Rosenberg A. H., Dunn J. J. & Dubendorff J. W. ( 1990 ) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60 – 89.en_US
dc.identifier.citedreferenceWhalin M. E., Strada S. J. & Thompson W. J. ( 1988 ) Purification and partial characterization of membrane-associated type II (cGMP-activatable) cyclic nucleotide phosphodiesterase from rabbit brain. Biochim. Biophys. Acta 972, 79 – 94.en_US
dc.identifier.citedreferenceWhalin M. E., Scammell J. G., Strada S. J. & Thompson W. J. ( 1991 ) Phosphodiesterase II, the cGMP-activatable cyclic nucleotide phosphodiesterase, regulates cyclic AMP metabolism in PC12 cells. Mol. Pharmacol. 39, 711 – 717.en_US
dc.identifier.citedreferenceWilson R. K., Chen C. & Hood L. ( 1990 ) Optimization of asymmetric polymerase chain reaction for rapid fluorescent DNA sequencing. Biotechnology 8, 184 – 189.en_US
dc.identifier.citedreferenceYan C., Zhao A. Z., Bentley J. K. & Beavo J. A. ( 1996 ) The calmodulin-dependent phosphodiesterase gene PDE 1C encodes several functionally different splice variants in a tissue specific manner. J. Biol. Chem. 271, 25699 – 25706.en_US
dc.identifier.citedreferenceYang Q., Paskind M., Bolger G., Thompson W. J., Repaske D. R., Cutler L. S. & Epstein P. M. ( 1994 ) A novel cyclic GMP stimulated phosphodiesterase from rat brain. Biochem. Biophys. Res. Commun. 205, 1850 – 1858.en_US
dc.identifier.citedreferenceYao H., York R. D., Misra-Press. A., Carr D. W. & Stork P. J. S. ( 1998 ) The cyclic adenosine monophosphate-dependent protein kinase (PKA) is required for sustained activation of mitogen-activated kinases and gene expression by nerve growth factor. J.  Biol. Chem. 273, 8240 – 8247.en_US
dc.identifier.citedreferenceYork R. D., Yao H., Dillon T., Ellig C. L., Eckert S. P., McClesky E. W. & Stork P. J. S. ( 1998 ) Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622 – 626.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.