Show simple item record

IFN-γ and IL-4 differentially shape metabolic responses and neuroprotective phenotype of astrocytes

dc.contributor.authorGarg, Sanjay K.en_US
dc.contributor.authorKipnis, Jonathanen_US
dc.contributor.authorBanerjee, Rumaen_US
dc.date.accessioned2010-04-01T15:46:30Z
dc.date.available2010-04-01T15:46:30Z
dc.date.issued2009-03en_US
dc.identifier.citationGarg, Sanjay K.; Kipnis, Jonathan; Banerjee, Ruma (2009). "IFN-γ and IL-4 differentially shape metabolic responses and neuroprotective phenotype of astrocytes." Journal of Neurochemistry 108(5): 1155-1166. <http://hdl.handle.net/2027.42/66267>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66267
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19141080&dopt=citationen_US
dc.format.extent697514 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 International Society for Neurochemistryen_US
dc.subject.otherAstrocytesen_US
dc.subject.otherNeuroprotectionen_US
dc.subject.otherGlutamateen_US
dc.subject.otherInterferon-γen_US
dc.subject.otherInterleukin-4en_US
dc.subject.otherRedoxen_US
dc.titleIFN-γ and IL-4 differentially shape metabolic responses and neuroprotective phenotype of astrocytesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Biological Chemistry, University of Michigan Medical Center, Medical Center Dr., Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother† Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USAen_US
dc.identifier.pmid19141080en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66267/1/j.1471-4159.2009.05872.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2009.05872.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAbbott N. J. ( 2002 ) Astrocyte–endothelial interactions and blood–brain barrier permeability. J. Anat. 200, 629 – 638.en_US
dc.identifier.citedreferenceAngelov D. N., Waibel S., Guntinas-Lichius O. et al. ( 2003 ) Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 100, 4790 – 4795.en_US
dc.identifier.citedreferenceAnkeny D. P. and Popovich P. G. ( 2008 ) Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience 4, 4.en_US
dc.identifier.citedreferenceAschner M., Mutkus L. and Allen J. W. ( 2001 ) Aspartate and glutamate transport in acutely and chronically ethanol exposed neonatal rat primary astrocyte cultures. Neurotoxicology 22, 601 – 605.en_US
dc.identifier.citedreferenceBalasingam V. and Yong V. W. ( 1996 ) Attenuation of astroglial reactivity by interleukin-10. J. Neurosci. 16, 2945 – 2955.en_US
dc.identifier.citedreferenceBate C., Kempster S., Last V. and Williams A. ( 2006 ) Interferon-gamma increases neuronal death in response to amyloid-beta1-42. J. Neuroinflammation 3, 7.en_US
dc.identifier.citedreferenceBenner E. J., Mosley R. L., Destache C. J. et al. ( 2004 ) Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc. Natl Acad. Sci. USA 101, 9435 – 9440.en_US
dc.identifier.citedreferenceBouzier-Sore A. K., Merle M., Magistretti P. J. and Pellerin L. ( 2002 ) Feeding active neurons: (re)emergence of a nursing role for astrocytes. J. Physiol. Paris 96, 273 – 282.en_US
dc.identifier.citedreferenceBrand A., Leibfritz D. and Richter-Landsberg C. ( 1999 ) Oxidative stress-induced metabolic alterations in rat brain astrocytes studied by multinuclear NMR spectroscopy. J. Neurosci. Res. 58, 576 – 585.en_US
dc.identifier.citedreferenceButovsky O., Talpalar A. E., Ben-Yaakov K. and Schwartz M. ( 2005 ) Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol. Cell. Neurosci. 29, 381 – 393.en_US
dc.identifier.citedreferenceButovsky O., Ziv Y., Schwartz A., Landa G., Talpalar A. E., Pluchino S., Martino G. and Schwartz M. ( 2006 ) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci. 31, 149 – 160.en_US
dc.identifier.citedreferenceCalabrese V., Lodi R., Tonon C. et al. ( 2005 ) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J. Neurol. Sci. 233, 145 – 162.en_US
dc.identifier.citedreferenceDringen R. ( 2000 ) Metabolism and functions of glutathione in brain. Prog. Neurobiol. 62, 649 – 671.en_US
dc.identifier.citedreferenceFaria A. M. and Weiner H. L. ( 2006 ) Oral tolerance: therapeutic implications for autoimmune diseases. Clin. Dev. Immunol. 13, 143 – 157.en_US
dc.identifier.citedreferenceFarina C., Aloisi F. and Meinl E. ( 2007 ) Astrocytes are active players in cerebral innate immunity. Trends Immunol. 28, 138 – 145.en_US
dc.identifier.citedreferenceFigueiredo C., Pais T. F., Gomes J. R. and Chatterjee S. ( 2008 ) Neuron-microglia crosstalk up-regulates neuronal FGF-2 expression which mediates neuroprotection against excitotoxicity via JNK1/2. J. Neurochem. 107, 73 – 85.en_US
dc.identifier.citedreferenceGarg S. K., Banerjee R. and Kipnis J. ( 2008 ) Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J. Immunol. 180, 3866 – 3873.en_US
dc.identifier.citedreferenceGimsa U., Wolf S. A., Haas D., Bechmann I. and Nitsch R. ( 2001 ) Th2 cells support intrinsic anti-inflammatory properties of the brain. J. Neuroimmunol. 119, 73 – 80.en_US
dc.identifier.citedreferenceGladden L. B. ( 2004 ) Lactate metabolism: a new paradigm for the third millennium. J. Physiol. 558, 5 – 30.en_US
dc.identifier.citedreferenceGorantla S., Liu J., Sneller H. et al. ( 2007 ) Copolymer-1 induces adaptive immune anti-inflammatory glial and neuroprotective responses in a murine model of HIV-1 encephalitis. J. Immunol. 179, 4345 – 4356.en_US
dc.identifier.citedreferenceHauben E., Butovsky O., Nevo U. et al. ( 2000a ) Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J. Neurosci. 20, 6421 – 6430.en_US
dc.identifier.citedreferenceHauben E., Nevo U., Yoles E. et al. ( 2000b ) Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. Lancet 355, 286 – 287.en_US
dc.identifier.citedreferenceHauben E., Ibarra A., Mizrahi T., Barouch R., Agranov E. and Schwartz M. ( 2001 ) Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: comparison with other myelin antigens. Proc. Natl Acad. Sci. USA 98, 15173 – 15178.en_US
dc.identifier.citedreferenceHirschberg D. L., Moalem G., He J., Mor F., Cohen I. R. and Schwartz M. ( 1998 ) Accumulation of passively transferred primed T cells independently of their antigen specificity following central nervous system trauma. J. Neuroimmunol. 89, 88 – 96.en_US
dc.identifier.citedreferenceIshikawa H., Ochi H., Chen M. L., Frenkel D., Maron R. and Weiner H. L. ( 2007 ) Inhibition of autoimmune diabetes by oral administration of anti-CD3 monoclonal antibody. Diabetes 56, 2103 – 2109.en_US
dc.identifier.citedreferenceJanus C., Pearson J., McLaurin J. et al. ( 2000 ) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408, 979 – 982.en_US
dc.identifier.citedreferenceJones T. B., Basso D. M., Sodhi A., Pan J. Z., Hart R. P., MacCallum R. C., Lee S., Whitacre C. C. and Popovich P. G. ( 2002 ) Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J. Neurosci. 22, 2690 – 2700.en_US
dc.identifier.citedreferenceKappler J. W., Skidmore B., White J. and Marrack P. ( 1981 ) Antigen-inducible, H-2-restricted, interleukin-2-producing T cell hybridomas. Lack of independent antigen and H-2 recognition. J. Exp. Med. 153, 1198 – 1214.en_US
dc.identifier.citedreferenceKintner D. B., Su G., Lenart B., Ballard A. J., Meyer J. W., Ng L. L., Shull G. E. and Sun D. ( 2004 ) Increased tolerance to oxygen and glucose deprivation in astrocytes from Na(+)/H(+) exchanger isoform 1 null mice. Am. J. Physiol. Cell Physiol. 287, C12 – C21.en_US
dc.identifier.citedreferenceKipnis J., Yoles E., Schori H., Hauben E., Shaked I. and Schwartz M. ( 2001 ) Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J. Neurosci. 21, 4564 – 4571.en_US
dc.identifier.citedreferenceKipnis J., Mizrahi T., Hauben E., Shaked I., Shevach E. and Schwartz M. ( 2002a ) Neuroprotective autoimmunity: naturally occurring CD4 +  CD25 + regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc. Natl Acad. Sci. USA 99, 15620 – 15625.en_US
dc.identifier.citedreferenceKipnis J., Mizrahi T., Yoles E., Ben-Nun A. and Schwartz M. ( 2002b ) Myelin specific Th1 cells are necessary for post-traumatic protective autoimmunity. J. Neuroimmunol. 130, 78 – 85.en_US
dc.identifier.citedreferenceKipnis J., Cardon M., Avidan H., Lewitus G. M., Mordechay S., Rolls A., Shani Y. and Schwartz M. ( 2004 ) Dopamine, through the extracellular signal-regulated kinase pathway, downregulates CD4 +  CD25 + regulatory T-cell activity: implications for neurodegeneration. J. Neurosci. 24, 6133 – 6143.en_US
dc.identifier.citedreferenceMoalem G., Leibowitz-Amit R., Yoles E., Mor F., Cohen I. R. and Schwartz M. ( 1999a ) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5, 49 – 55.en_US
dc.identifier.citedreferenceMoalem G., Monsonego A., Shani Y., Cohen I. R. and Schwartz M. ( 1999b ) Differential T cell response in central and peripheral nerve injury: connection with immune privilege. FASEB J. 13, 1207 – 1217.en_US
dc.identifier.citedreferenceMosharov E., Cranford M. R. and Banerjee R. ( 2000 ) The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 39, 13005 – 13011.en_US
dc.identifier.citedreferenceO’Garra A., Steinman L. and Gijbels K. ( 1997 ) CD4 + T-cell subsets in autoimmunity. Curr. Opin. Immunol. 9, 872 – 883.en_US
dc.identifier.citedreferenceOren A., Falk K., Rotzschke O., Bechmann I., Nitsch R. and Gimsa U. ( 2004 ) Production of neuroprotective NGF in astrocyte-T helper cell cocultures is upregulated following antigen recognition. J. Neuroimmunol. 149, 59 – 65.en_US
dc.identifier.citedreferencePellerin L. and Magistretti P. J. ( 1994 ) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA 91, 10625 – 10629.en_US
dc.identifier.citedreferencePopovich P. G., Stokes B. T. and Whitacre C. C. ( 1996 ) Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nervous system. J. Neurosci. Res. 45, 349 – 363.en_US
dc.identifier.citedreferenceRosenberg G. A., Cunningham L. A., Wallace J., Alexander S., Estrada E. Y., Grossetete M., Razhagi A., Miller K. and Gearing A. ( 2001 ) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res. 893, 104 – 112.en_US
dc.identifier.citedreferenceSarandol A., Kirli S., Akkaya C., Altin A., Demirci M. and Sarandol E. ( 2007 ) Oxidative-antioxidative systems and their relation with serum S100 B levels in patients with schizophrenia: effects of short term antipsychotic treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1164 – 1169.en_US
dc.identifier.citedreferenceScumpia P. O., Kelly K. M., Reeves W. H. and Stevens B. R. ( 2005 ) Double-stranded RNA signals antiviral and inflammatory programs and dysfunctional glutamate transport in TLR3-expressing astrocytes. Glia 52, 153 – 162.en_US
dc.identifier.citedreferenceShaked I., Tchoresh D., Gersner R., Meiri G., Mordechai S., Xiao X., Hart R. P. and Schwartz M. ( 2005 ) Protective autoimmunity: interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. J. Neurochem. 92, 997 – 1009.en_US
dc.identifier.citedreferenceSokoloff L., Takahashi S., Gotoh J., Driscoll B. F. and Law M. J. ( 1996 ) Contribution of astroglia to functionally activated energy metabolism. Dev. Neurosci. 18, 344 – 352.en_US
dc.identifier.citedreferenceTacconi M. T. ( 1998 ) Neuronal death: is there a role for astrocytes ? Neurochem. Res. 23, 759 – 765.en_US
dc.identifier.citedreferenceTilleux S. and Hermans E. ( 2007 ) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J. Neurosci. Res. 85, 2059 – 2070.en_US
dc.identifier.citedreferenceVitvitsky V., Mosharov E., Tritt M., Ataullakhanov F. and Banerjee R. ( 2003 ) Redox regulation of homocysteine-dependent glutathione synthesis. Redox Rep. 8, 57 – 63.en_US
dc.identifier.citedreferenceVogel S. N., English K. E. and O’Brien A. D. ( 1982 ) Silica enhancement of murine endotoxin sensitivity. Infect. Immun. 38, 681 – 685.en_US
dc.identifier.citedreferenceWoiciechowsky C., Schoning B., Stoltenburg-Didinger G., Stockhammer F. and Volk H. D. ( 2004 ) Brain-IL-1 beta triggers astrogliosis through induction of IL-6: inhibition by propranolol and IL-10. Med. Sci. Monit. 10, BR325 – BR330.en_US
dc.identifier.citedreferenceWolf S. A., Fisher J., Bechmann I., Steiner B., Kwidzinski E. and Nitsch R. ( 2002 ) Neuroprotection by T-cells depends on their subtype and activation state. J. Neuroimmunol. 133, 72 – 80.en_US
dc.identifier.citedreferenceXu D., Wang L., Olson J. E. and Lu L. ( 2001 ) Asymmetrical response of p38 kinase activation to volume changes in primary rat astrocytes. Exp. Biol. Med. (Maywood) 226, 927 – 933.en_US
dc.identifier.citedreferenceYoles E., Hauben E., Palgi O. et al. ( 2001 ) Protective autoimmunity is a physiological response to CNS trauma. J. Neurosci. 21, 3740 – 3748.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.