Show simple item record

Improving Estimates of Genetic Maps: A Maximum Likelihood Approach

dc.contributor.authorStewart, William C. L.en_US
dc.contributor.authorThompson, Elizabeth A.en_US
dc.date.accessioned2010-04-01T15:46:45Z
dc.date.available2010-04-01T15:46:45Z
dc.date.issued2006-09en_US
dc.identifier.citationStewart, William C. L.; Thompson, Elizabeth A. (2006). "Improving Estimates of Genetic Maps: A Maximum Likelihood Approach." Biometrics 62(3): 728-734. <http://hdl.handle.net/2027.42/66271>en_US
dc.identifier.issn0006-341Xen_US
dc.identifier.issn1541-0420en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66271
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16984314&dopt=citationen_US
dc.description.abstractAs a result of previous large, multipoint linkage studies there is a substantial amount of existing marker data. Due to the increased sample size, genetic maps estimated from these data could be more accurate than publicly available maps. However, current methods for map estimation are restricted to data sets containing pedigrees with a small number of individuals, or cannot make full use of marker data that are observed at several loci on members of large, extended pedigrees. In this article, a maximum likelihood (ML) method for map estimation that can make full use of the marker data in a large, multipoint linkage study is described. The method is applied to replicate sets of simulated marker data involving seven linked loci, and pedigree structures based on the real multipoint linkage study of Abkevich et al. (2003, American Journal of Human Genetics 73, 1271–1281). The variance of the ML estimate is accurately estimated, and tests of both simple and composite null hypotheses are performed. An efficient procedure for combining map estimates over data sets is also suggested.en_US
dc.format.extent279366 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights2006, The International Biometric Societyen_US
dc.subject.otherMap Estimationen_US
dc.subject.otherMultipoint Linkage Analysisen_US
dc.subject.otherOptimization Algorithmsen_US
dc.subject.otherStochastic Approximationen_US
dc.titleImproving Estimates of Genetic Maps: A Maximum Likelihood Approachen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCurrent address: Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109-2029, U.S.A.en_US
dc.contributor.affiliationotherDepartment of Statistics, University of Washington, Seattle, Washington 98195, U.S.A.en_US
dc.identifier.pmid16984314en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66271/1/j.1541-0420.2006.00532.x.pdf
dc.identifier.doi10.1111/j.1541-0420.2006.00532.xen_US
dc.identifier.sourceBiometricsen_US
dc.identifier.citedreferenceAbkevich, V., Camp, N. J., Hensel, C. H., et al. ( 2003 ). Predisposition locus for major depression at chromosome 12q22-12q23.2. American Journal of Human Genetics 73, 1271 – 1281.en_US
dc.identifier.citedreferenceBroman, K. W., Murray, J. C., Sheffield, V. C., White, R. L., and Weber, J. L. ( 1998 ). Comprehensive human genetic map: Individual and sex-specific variation in recombination. American Journal of Human Genetics 63, 861 – 869.en_US
dc.identifier.citedreferenceBuetow, K. H. ( 1991 ). Influence of aberrant observations on high-resolution linkage analysis outcomes. American Journal of Human Genetics 49, 985 – 994.en_US
dc.identifier.citedreferenceCaffo, B. S., Jank, W., and Jones, G. L. ( 2005 ). Ascent-based Monte Carlo expectation–maximization. Journal of the Royal Statistical Society, Series B 67, 235 – 251.en_US
dc.identifier.citedreferenceDaw, E. W., Thompson, E. A., and Wijsman, E. M. ( 2000 ). Bias in multipoint linkage analysis arising from map misspecification. Genetic Epidemiology 19, 366 – 380.en_US
dc.identifier.citedreferenceDempster, A. P., Laird, N. M., and Rubin, D. B. ( 1977 ). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B 39, 1 – 37.en_US
dc.identifier.citedreferenceDouglas, J. A., Skol, A. D., and Boehnke, M. ( 2002 ). Probability of detection of genotyping errors and mutations as inheritance inconsistencies in nuclear-family data. American Journal of Human Genetics 70, 487 – 495.en_US
dc.identifier.citedreferenceEdwards, J. H. ( 1976 ). The interpretation of lod scores in linkage analysis. Human Gene Mapping 3, 289 – 293.en_US
dc.identifier.citedreferenceEhm, M. G., Kimmel, M., and Cottingham, R. W. J. ( 1996 ). Error detection for genetic data, using likelihood methods. American Journal of Human Genetics 58, 225 – 234.en_US
dc.identifier.citedreferenceElston, R. C. and Stewart, J. ( 1971 ). A general model for the analysis of pedigree data. Human Heredity 21, 523 – 542.en_US
dc.identifier.citedreferenceGoldstein, D. R., Zhao, H., and Speed, T. P. ( 1997 ). The effects of genotyping errors and interference on estimation of genetic distance. Human Heredity 47, 86 – 100.en_US
dc.identifier.citedreferenceGu, M. G. and Kong, F. H. ( 1998 ). A stochastic approximation algorithm with Markov chain Monte Carlo method for incomplete data estimation problems. Proceedings of the National Academy of Sciences of the United States of America 95, 7270 – 7274.en_US
dc.identifier.citedreferenceGu, M. G. and Li, S. ( 1998 ). A stochastic approximation algorithm for maximum likelihood estimation with incomplete data. Canadian Journal of Statistics 26, 567 – 591.en_US
dc.identifier.citedreferenceGudbjartsson, D. F., Jonasson, K., Frigge, M. L., and Kong, A. ( 2000 ). Allegro, a new computer program for multipoint linkage analysis. Nature Genetics 25, 12 – 13.en_US
dc.identifier.citedreferenceGuo, S. W. and Thompson, E. A. ( 1994 ). Monte Carlo estimation of mixed models for large complex pedigrees. Biometrics 50, 417 – 432.en_US
dc.identifier.citedreferenceHaldane, J. B. S. ( 1919 ). The combination of linkage values and the calculation of distances between the loci of linked factors. Journal of Genetics 8, 229 – 309.en_US
dc.identifier.citedreferenceHalpern, J. and Whittemore, A. S. ( 1999 ). Multipoint linkage analysis. A cautionary note. Human Heredity 49, 194 – 196.en_US
dc.identifier.citedreferenceHeath, S. and Thompson, E. A. ( 1997 ). MCMC samplers for multilocus analyses on complex pedigrees. American Journal of Human Genetics 61, A278.en_US
dc.identifier.citedreferenceKong, A., Gudbjartsson, D. F., Sainz, J., et al. ( 2002 ). A high-resolution recombination map of the human genome. Nature Genetics 31, 241 – 247.en_US
dc.identifier.citedreferenceLander, E. S. and Green, P. ( 1987 ). Construction of multilocus genetic linkage maps in humans. Proceedings of the National Academy of Sciences of the United States of America 84, 2363 – 2367.en_US
dc.identifier.citedreferenceLathrop, G. M., Lalouel, J. M., and White, R. L. ( 1986 ). Construction of human genetic linkage maps: Likelihood calculations for multilocus analysis. Genetic Epidemiology 3, 39 – 52.en_US
dc.identifier.citedreferenceLouis, T. A. ( 1982 ). Finding observed information using the EM algorithm. Journal of the Royal Statistical Society, Series B 44, 98 – 130.en_US
dc.identifier.citedreferenceMather, K. ( 1938 ). Crossing-over. Biological Reviews of the Cambridge Philosophical Society 13, 252 – 292.en_US
dc.identifier.citedreferenceMatise, T. C., Sachidanandam, R., Clark, A. G., et al. ( 2003 ). A 3.9-centimorgan-resolution human single-nucleotide polymorphism linkage map and screening set. American Journal of Human Genetics 73, 271 – 284.en_US
dc.identifier.citedreferenceMetropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. ( 1953 ). Equations of state calculations by fast computing machines. Journal of Chemical Physics 7, 277 – 318.en_US
dc.identifier.citedreferenceNevel'son, M. and Has'minski, R. Z. ( 1973 ). An adaptive Robbins–Monro procedure. Automation and Remote Control 34, 1594 – 1607.en_US
dc.identifier.citedreferenceRobbins, H. and Monro, S. ( 1951 ). A stochastic approximation method. Annals of Mathematical Statistics 22, 400 – 407.en_US
dc.identifier.citedreferenceSieh, W., Basu, S., Fu, A., Rothstein, J., Scheet, P., Stewart, W., Sung, Y., Thompson, E., and Wijsman, E. ( 2005 ). Comparison of marker types and map assumptions using MCMC–based linkage analysis of COGA data. BioMed Central Genetics. 6 ( suppl. 1 ), S11.en_US
dc.identifier.citedreferenceSobel, E., Papp, J. C., and Lange, K. ( 2002 ). Detection and integration of genotyping errors in statistical genetics. American Journal of Human Genetics 70, 496 – 508.en_US
dc.identifier.citedreferenceStringham, H. M. and Boehnke, M. ( 1996 ). Identifying marker typing incompatibilities in linkage analysis. American Journal of Human Genetics 59, 946 – 950.en_US
dc.identifier.citedreferenceThompson, E. A. ( 2000 ). Statistical inferences from genetic data on pedigrees. NSF-CBMS Regional Conference Series in Probability and Statistics Volume, 6th edition. Beachwood, Ohio : Institute of Mathematical Statistics.en_US
dc.identifier.citedreferenceWu, C. F. J. ( 1983 ). On the convergence properties of the EM algorithm. Annals of Statistics 11, 95 – 103.en_US
dc.identifier.citedreferenceYannaros, N. ( 1988 ). On Cox processes and gamma renewal processes. Journal of Applied Probability 25, 423 – 427.en_US
dc.identifier.citedreferenceYounes, L. ( 1999 ). On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics and Stochastics Reports 65, 177 – 228.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.