Show simple item record

Amphetamine-evoked c- fos mRNA expression in the caudate-putamen: the effects of DA and NMDA receptor antagonists vary as a function of neuronal phenotype and environmental context

dc.contributor.authorFerguson, Susan M.en_US
dc.contributor.authorNorton, Camille S.en_US
dc.contributor.authorWatson, Stanley J.en_US
dc.contributor.authorAkil, Hudaen_US
dc.contributor.authorRobinson, Terry E.en_US
dc.date.accessioned2010-04-01T15:46:48Z
dc.date.available2010-04-01T15:46:48Z
dc.date.issued2003-07en_US
dc.identifier.citationFerguson, Susan M . ; Norton, Camille S . ; Watson, Stanley J . ; Akil, Huda; Robinson, Terry E . (2003). "Amphetamine-evoked c- fos mRNA expression in the caudate-putamen: the effects of DA and NMDA receptor antagonists vary as a function of neuronal phenotype and environmental context." Journal of Neurochemistry 86(1): 33-44. <http://hdl.handle.net/2027.42/66272>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66272
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12807422&dopt=citationen_US
dc.description.abstractDopamine (DA) and glutamate neurotransmission is thought to be critical for psychostimulant drugs to induce immediate early genes (IEGs) in the caudate-putamen (CPu). We report here, however, that the ability of DA and glutamate NMDA receptor antagonists to attenuate amphetamine-evoked c- fos mRNA expression in the CPu depends on environmental context. When given in the home cage, amphetamine induced c- fos mRNA expression predominately in preprodynorphin and preprotachykinin mRNA-containing neurons (Dyn-SP+ cells) in the CPu. In this condition, all of the D1R, D2R and NMDAR antagonists tested dose-dependently decreased c- fos expression in Dyn-SP+ cells. When given in a novel environment, amphetamine induced c- fos mRNA in both Dyn-SP+ and preproenkephalin mRNA-containing neurons (Enk+ cells). In this condition, D1R and non-selective NMDAR antagonists dose-dependently decreased c- fos expression in Dyn-SP+ cells, but neither D2R nor NR2B-selective NMDAR antagonists had no effect. Furthermore, amphetamine-evoked c- fos expression in Enk+ cells was most sensitive to DAR and NMDAR antagonism; the lowest dose of every antagonist tested significantly decreased c- fos expression only in these cells. Finally, novelty-stress also induced c- fos expression in both Dyn-SP+ and Enk+ cells, and this was relatively resistant to all but D1R antagonists. We suggest that the mechanism(s) by which amphetamine evokes c- fos expression in the CPu varies depending on the stimulus (amphetamine vs. stress), the striatal cell population engaged (Dyn-SP+ vs. Enk+ cells), and environmental context (home vs. novel cage).en_US
dc.format.extent318097 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2003 International Society for Neurochemistryen_US
dc.subject.otherDopamineen_US
dc.subject.otherGlutamateen_US
dc.subject.otherImmediate Early Genesen_US
dc.subject.otherIn Situ Hybridizationen_US
dc.subject.otherStriatumen_US
dc.subject.otherRaten_US
dc.titleAmphetamine-evoked c- fos mRNA expression in the caudate-putamen: the effects of DA and NMDA receptor antagonists vary as a function of neuronal phenotype and environmental contexten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Department of Psychology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Neuroscience Program,en_US
dc.contributor.affiliationother† Mental Health Research Institute anden_US
dc.identifier.pmid12807422en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66272/1/j.1471-4159.2003.01815.x.pdf
dc.identifier.doi10.1046/j.1471-4159.2003.01815.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBadiani A., Camp D. M. and Robinson T. E. ( 1997 ) Enduring enhancement of amphetamine sensitization by drug-associated environmental stimuli. J. Pharmacol. Exp. Ther. 0, 787 – 794.en_US
dc.identifier.citedreferenceBadiani A., Oates M. M., Day H. E., Watson S. J., Akil H. and Robinson T. E. ( 1998 ) Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modulation by environmental novelty. J. Neurosci. 18, 10579 – 10593.en_US
dc.identifier.citedreferenceBadiani A., Oates M. M., Day H. E., Watson S. J., Akil H. and Robinson T. E. ( 1999 ) Environmental modulation of amphetamine-induced c-fos expression in D1 versus D2 striatal neurons. Behav. Brain Res. 103, 203 – 209.en_US
dc.identifier.citedreferenceBerretta S., Robertson H. A. and Graybiel A. M. ( 1992 ) Dopamine and glutamate agonists stimulate neuron-specific expression of Fos-like protein in the striatum. J. Neurophysiol. 68, 767 – 777.en_US
dc.identifier.citedreferenceBerretta S., Robertson H. A. and Graybiel A. M. ( 1993 ) Neurochemically specialized projection neurons of the striatum respond differentially to psychomotor stimulants. Prog. Brain Res. 99, 201 – 205.en_US
dc.identifier.citedreferenceBerretta S., Parthasarathy H. B. and Graybiel A. M. ( 1997 ) Local release of GABAergic inhibition in the motor cortex induces immediate-early gene expression in indirect pathway neurons of the striatum. J. Neurosci. 17, 4752 – 4763.en_US
dc.identifier.citedreferenceBerretta S., Sachs Z. and Graybiel A. M. ( 1999 ) Cortically driven Fos induction in the striatum is amplified by local dopamine D2-class receptor blockade. Eur. J. Neurosci. 11, 4309 – 4319.en_US
dc.identifier.citedreferenceCarlsson M. and Carlsson A. ( 1990 ) Interactions between glutamatergic and monoaminergic systems within the basal ganglia – implications for schizophrenia and Parkinson's disease. Trends Neurosci. 13, 272 – 276.en_US
dc.identifier.citedreferenceCenci M. A. and Bjorklund A. ( 1993 ) Transection of corticostriatal afferents reduces amphetamine- and apomorphine-induced striatal Fos expression and turning behaviour in unilaterally 6-hydroxydopamine-lesioned rats. Eur. J. Neurosci. 5, 1062 – 1070.en_US
dc.identifier.citedreferenceCenci M. A., Kalen P., Mandel R. J., Wictorin K. and Bjorklund A. ( 1992 ) Dopaminergic transplants normalize amphetamine- and apomorphine-induced Fos expression in the 6-hydroxydopamine-lesioned striatum. Neuroscience 46, 943 – 957.en_US
dc.identifier.citedreferenceCole R. L., Konradi C., Douglass J. and Hyman S. E. ( 1995 ) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14, 813 – 823.en_US
dc.identifier.citedreferenceCurran E. J. and Watson S. J. Jr ( 1995 ) Dopamine receptor mRNA expression patterns by opioid peptide cells in the nucleus accumbens of the rat: a double in situ hybridization study. J. Comp. Neurol. 361, 57 – 76.en_US
dc.identifier.citedreferenceDrago J., Gerfen C. R., Westphal H. and Steiner H. ( 1996 ) D1 dopamine receptor-deficient mouse: cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 74, 813 – 823.en_US
dc.identifier.citedreferenceDragunow M., Logan B. and Laverty R. ( 1991 ) 3,4-Methylenedioxymethamphetamine induces Fos-like proteins in rat basal ganglia: reversal with MK 801. Eur. J. Pharmacol. 206, 255 – 258.en_US
dc.identifier.citedreferenceDuffy R. A., Hunt M. A., Wamsley J. K. and McQuade R. D. ( 2000 ) In vivo autoradiography of [3H]SCH 39166 in rat brain: selective displacement by D1/D5 antagonists. J. Chem. Neuroanat. 19, 41 – 46.en_US
dc.identifier.citedreferenceFalk J. L. and Feingold D. A. ( 1987 ) Environmental and cultural factors in the behavioral actions of drugs, in Meltzer, H. Y., ed. Psychopharmacology: The Third Generation of Progress, pp. 1503 – 1510. Raven Press, New York.en_US
dc.identifier.citedreferenceFenu S., Carta A. and Morelli M. ( 1995 ) Intranigral injections of glutamate antagonists modulate dopamine D1-mediated turning behavior and striatal c-fos expression. J. Neural Transm. Suppl. 45, 75 – 81.en_US
dc.identifier.citedreferenceFu L. and Beckstead R. M. ( 1992 ) Cortical stimulation induces fos expression in striatal neurons. Neuroscience 46, 329 – 334.en_US
dc.identifier.citedreferenceGardier A. M., Moratalla R., Cuellar B., Sacerdote M., Guibert B., Lebrec H. and Graybiel A. M. ( 2000 ) Interaction between the serotoninergic and dopaminergic systems in d-fenfluramine-induced activation of c-fos and jun B genes in rat striatal neurons. J. Neurochem. 74, 1363 – 1373.en_US
dc.identifier.citedreferenceGerfen C. R., Miyachi S., Paletzki R. and Brown P. ( 2002 ) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J. Neurosci. 22, 5042 – 5054.en_US
dc.identifier.citedreferenceGraybiel A. M., Moratalla R. and Robertson H. A. ( 1990 ) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc. Natl Acad. Sci. USA 87, 6912 – 6916.en_US
dc.identifier.citedreferenceHarlan R. E. and Garcia M. M. ( 1998 ) Drugs of abuse and immediate-early genes in the forebrain. Mol. Neurobiol. 16, 221 – 267.en_US
dc.identifier.citedreferenceHyman S. E. and Malenka R. C. ( 2001 ) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695 – 703.en_US
dc.identifier.citedreferenceJaber M., Cador M., Dumartin B., Normand E., Stinus L. and Bloch B. ( 1995 ) Acute and chronic amphetamine treatments differently regulate neuropeptide messenger RNA levels and Fos immunoreactivity in rat striatal neurons. Neuroscience 65, 1041 – 1050.en_US
dc.identifier.citedreferenceJohansson B., Lindstrom K. and Fredholm B. B. ( 1994 ) Differences in the regional and cellular localization of c-fos messenger RNA induced by amphetamine, cocaine and caffeine in the rat. Neuroscience 59, 837 – 849.en_US
dc.identifier.citedreferenceKawaguchi Y., Wilson C. J., Augood S. J. and Emson P. C. ( 1995 ) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 18, 527 – 535.en_US
dc.identifier.citedreferenceKeefe K. A. and Gerfen C. R. ( 1995 ) D1–D2 dopamine receptor synergy in striatum: effects of intrastriatal infusions of dopamine agonists and antagonists on immediate early gene expression. Neuroscience 66, 903 – 913.en_US
dc.identifier.citedreferenceKeefe K. A. and Gerfen C. R. ( 1996 ) D1 dopamine receptor-mediated induction of zif268 and c-fos in the dopamine-depleted striatum: differential regulation and independence from NMDA receptors. J. Comp. Neurol. 367, 165 – 176.en_US
dc.identifier.citedreferenceKonradi C., Cole R. L., Heckers S. and Hyman S. E. ( 1994 ) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J. Neurosci. 14, 5623 – 5634.en_US
dc.identifier.citedreferenceKonradi C., Leveque J. C. and Hyman S. E. ( 1996 ) Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J. Neurosci. 16, 4231 – 4239.en_US
dc.identifier.citedreferenceLaHoste G. J., Henry B. L. and Marshall J. F. ( 2000 ) Dopamine D1 receptors synergize with D2, but not D3 or D4, receptors in the striatum without the involvement of action potentials. J. Neurosci. 20, 6666 – 6671.en_US
dc.identifier.citedreferenceLi B. H. and Rowland N. E. ( 1993 ) Dexfenfluramine induces Fos-like immunoreactivity in discrete brain regions in rats. Brain Res. Bull. 31, 43 – 48.en_US
dc.identifier.citedreferenceLindefors N. and Ungerstedt U. ( 1990 ) Bilateral regulation of glutamate tissue and extracellular levels in caudate-putamen by midbrain dopamine neurons. Neurosci. Lett. 115, 248 – 252.en_US
dc.identifier.citedreferenceListe I., Rozas G., Guerra M. J. and Labandeira-Garcia J. L. ( 1995 ) Cortical stimulation induces Fos expression in striatal neurons via NMDA glutamate and dopamine receptors. Brain Res. 700, 1 – 12.en_US
dc.identifier.citedreferenceMcGinty J. F. and Wang J. Q. ( 1998 ) Drugs of abuse and striatal gene expression. Adv. Pharmacol. 42, 1017 – 1019.en_US
dc.identifier.citedreferenceMcPherson R. J. and Marshall J. F. ( 2000 ) Substantia nigra glutamate antagonists produce contralateral turning and basal ganglia Fos expression: interactions with D1 and D2 dopamine receptor agonists. Synapse 36, 194 – 204.en_US
dc.identifier.citedreferenceMoratalla R., Xu M., Tonegawa S. and Graybiel A. M. ( 1996 ) Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc. Natl Acad. Sci. USA 93, 14928 – 14933.en_US
dc.identifier.citedreferenceNestler E. J., Hope B. T. and Widnell K. L. ( 1993 ) Drug addiction: a model for the molecular basis of neural plasticity. Neuron 11, 995 – 1006.en_US
dc.identifier.citedreferenceParthasarathy H. B. and Graybiel A. M. ( 1997 ) Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the squirrel monkey. J. Neurosci. 17, 2477 – 2491.en_US
dc.identifier.citedreferencePaxinos G. and Watson C. ( 1998 ) The Rat Brain in Stereotaxic Coordinates, 4th edn. Academic Press, San Diego.en_US
dc.identifier.citedreferenceQuinlan E. M., Philpot B. D., Huganir R. L. and Bear M. F. ( 1999 ) Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat. Neurosci. 2, 352 – 357.en_US
dc.identifier.citedreferenceRobinson T. E., Browman K. E., Crombag H. S. and Badiani A. ( 1998 ) Modulation of the induction or expression of psychostimulant sensitization by the circumstances surrounding drug administration. Neurosci. Biobehav. Rev. 22, 347 – 354.en_US
dc.identifier.citedreferenceRuskin D. N. and Marshall J. F. ( 1994 ) Amphetamine- and cocaine-induced fos in the rat striatum depends on D2 dopamine receptor activation. Synapse 18, 233 – 240.en_US
dc.identifier.citedreferenceSgambato V., Abo V., Rogard M., Besson M. J. and Deniau J. M. ( 1997 ) Effect of electrical stimulation of the cerebral cortex on the expression of the Fos protein in the basal ganglia. Neuroscience 81, 93 – 112.en_US
dc.identifier.citedreferenceSgambato V., Pages C., Rogard M., Besson M. J. and Caboche J. ( 1998a ) Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J. Neurosci. 18, 8814 – 8825.en_US
dc.identifier.citedreferenceSgambato V., Vanhoutte P., Pages C., Rogard M., Hipskind R., Besson M. J. and Caboche J. ( 1998b ) In vivo expression and regulation of Elk-1, a target of the extracellular-regulated kinase signaling pathway, in the adult rat brain. J. Neurosci. 18, 214 – 226.en_US
dc.identifier.citedreferenceSnyder-Keller A. M. ( 1991 ) Striatal c-fos induction by drugs and stress in neonatally dopamine-depleted rats given nigral transplants: importance of NMDA activation and relevance to sensitization phenomena. Exp. Neurol. 113, 155 – 165.en_US
dc.identifier.citedreferenceStandaert D. G., Friberg I. K., Landwehrmeyer G. B., Young A. B. and Penney J. B. Jr ( 1999 ) Expression of NMDA glutamate receptor subunit mRNAs in neurochemically identified projection and interneurons in the striatum of the rat. Brain Res. Mol. Brain Res. 64, 11 – 23.en_US
dc.identifier.citedreferenceTang Y. P., Shimizu E., Dube G. R., Rampon C., Kerchner G. A., Zhuo M., Liu G. and Tsien J. Z. ( 1999 ) Genetic enhancement of learning and memory in mice. Nature 401, 63 – 69.en_US
dc.identifier.citedreferenceUslaner J., Badiani A., Day H. E., Watson S. J., Akil H. and Robinson T. E. ( 2001a ) Environmental context modulates the ability of cocaine and amphetamine to induce c-fos mRNA expression in the neocortex, caudate nucleus, and nucleus accumbens. Brain Res. 920, 106 – 116.en_US
dc.identifier.citedreferenceUslaner J., Badiani A., Norton C. S., Day H. E., Watson S. J., Akil H. and Robinson T. E. ( 2001b ) Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur. J. Neurosci. 13, 1977 – 1983.en_US
dc.identifier.citedreferenceUslaner J. M., Norton C. S., Watson S. J., Akil H. and Robinson T. E. ( 2003 ) Amphetamine-induced c-fos mRNA expression in the caudate-putamen and subthalamic nucleus: interactions between dose, environment, and neuronal phenotype. J. Neurochem. 85, 105 – 114.en_US
dc.identifier.citedreferenceVargo J. M. and Marshall J. F. ( 1995 ) Time-dependent changes in dopamine agonist-induced striatal Fos immunoreactivity are related to sensory neglect and its recovery after unilateral prefrontal cortex injury. Synapse 20, 305 – 315.en_US
dc.identifier.citedreferenceWang J. Q. and McGinty J. F. ( 1997 ) Intrastriatal injection of a muscarinic receptor agonist and antagonist regulates striatal neuropeptide mRNA expression in normal and amphetamine-treated rats. Brain Res. 748, 62 – 70.en_US
dc.identifier.citedreferenceWang J. Q., Daunais J. B. and McGinty J. F. ( 1994 ) NMDA receptors mediate amphetamine-induced upregulation of zif/268 and preprodynorphin mRNA expression in rat striatum. Synapse 18, 343 – 353.en_US
dc.identifier.citedreferenceWest A. R. and Grace A. A. ( 2002 ) Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J. Neurosci. 22, 294 – 304.en_US
dc.identifier.citedreferenceYoung S. T., Porrino L. J. and Iadarola M. J. ( 1991 ) Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors. Proc. Natl Acad. Sci. USA 88, 1291 – 1295.en_US
dc.identifier.citedreferenceYung K. K., Bolam J. P., Smith A. D., Hersch S. M., Ciliax B. J. and Levey A. I. ( 1995 ) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65, 709 – 730.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.