Show simple item record

Antiepileptic Drug Mechanisms of Action

dc.contributor.authorMacdonald, Robert L.en_US
dc.contributor.authorKelly, Kevin M.en_US
dc.date.accessioned2010-04-01T15:47:53Z
dc.date.available2010-04-01T15:47:53Z
dc.date.issued1993-11en_US
dc.identifier.citationMacdonald, Robert L.; Kelly, Kevin M. (1993). "Antiepileptic Drug Mechanisms of Action." Epilepsia 34(): S1-S8. <http://hdl.handle.net/2027.42/66291>en_US
dc.identifier.issn0013-9580en_US
dc.identifier.issn1528-1167en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66291
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=7687957&dopt=citationen_US
dc.description.abstractClinically used antiepileptic drugs (AEDs) decrease membrane excitability by interacting with ion channels or neurotransmitter receptors. Currently available AEDs appear to act on sodium channels, GABA A receptors, or calcium channels. Phenytoin, carbamazepine, and possibly valproate (VPA) decrease high-frequency repetitive firing of action potentials by enhancing sodium channel inactivation. Benzodiazepines and barbiturates enhance GABA A receptor-mediated inhibition. Ethosuximide and possibly VPA reduce a low-threshold calcium current. The mechanisms of action of AEDs currently under development are less clear. Lamotrigine may decrease sustained high-frequency repetitive firing. The mechanisms of action of felbamate are unknown. Gabapentin (GBP) appears to bind to a specific binding site in the central nervous system with a restricted regional distribution, but the identity of the binding site and the mechanism of action of GBP remain uncertain.en_US
dc.format.extent862077 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1993 International League Against Epilepsyen_US
dc.subject.otherAnticonvulsantsen_US
dc.subject.otherNeuropharmacologyen_US
dc.subject.otherNeurotransmittersen_US
dc.subject.otherGABAen_US
dc.subject.otherPhenytoinen_US
dc.subject.otherCarbamazepineen_US
dc.subject.otherEthosuximideen_US
dc.subject.otherTri-methadioneen_US
dc.subject.otherBenzodiazepinesen_US
dc.subject.otherBarbituratesen_US
dc.subject.otherValproateen_US
dc.subject.otherFelbamateen_US
dc.subject.otherGabapentinen_US
dc.subject.otherLamotrigineen_US
dc.subject.otherNeural Inhibitionen_US
dc.subject.otherSodiumen_US
dc.subject.otherCalciumen_US
dc.titleAntiepileptic Drug Mechanisms of Actionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum*Departments of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationum†Physiology, University of Michigan Medical Center, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid7687957en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66291/1/j.1528-1157.1993.tb05918.x.pdf
dc.identifier.doi10.1111/j.1528-1157.1993.tb05918.xen_US
dc.identifier.sourceEpilepsiaen_US
dc.identifier.citedreferenceBartoszyk GD. Gabapentin and convulsions provoked by excitatory amino acids. Naunyn Schmiedebergs Arch Pharmacol 1983 ; 324 : R24.en_US
dc.identifier.citedreferenceBartoszyk GD, Fritschi E., Herrmann M., Satzinger G. Indications for an involvement of the GABA-system in the mechanism of action of gabapentin. Naunyn Schmiedebergs Arch Pharmacol 1983 ; 322 : R94.en_US
dc.identifier.citedreferenceBartoszyk GD, Meyerson N., Reimann W., Satzinger G., von Hodenberg, A. Gabapentin. In : Porter, RJ, eds. Current problems in epilepsy: new anticonvulsant drugs. London : John Libbey & Co., 1986 : 147 – 64.en_US
dc.identifier.citedreferenceBartoszyk GD, Reimann W. Preclinical characterization of the anticonvulsant gabapentin. Book of abstracts. XVIth Epilepsy International Congress, Hamburg, Germany, 1985 ;.en_US
dc.identifier.citedreferenceBauer G., Bechinger D., Castell M., et al. Gabapentin in the treatment of drug-resistant epileptic patients. In : Manelis, J., et al., eds. Advances in epileptologv. XVIIth Epilepsy International Symposium. New York : Raven Press 1989 ; 17 : 219 – 21.en_US
dc.identifier.citedreferenceMeldrum, BS, eds. Recent advances in epilepsy, vol. 5. New York : Churchill Livingstone, 1992 : 211 – 21.en_US
dc.identifier.citedreferenceCheung H., Kamp D., Harris E. An in vitro investigation of the action of lamotrigine on neuronal voltage-activated sodium channels. Epilepsy Res 1992 ; 13 : 107 – 12.en_US
dc.identifier.citedreferenceCoulter DA, Hugenard JR, Prince DA. Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient low-threshold current. J Physiol 1989a ; 414 : 587 – 604.en_US
dc.identifier.citedreferenceCoulter DA, Hugenard JR, Prince DA. Specific petit mal anticonvulsants reduce calcium currents in thalamic neurons. Neurosci Lett 1989b ; 98 : 74 – 8.en_US
dc.identifier.citedreferenceCoulter DA, Hugenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 1989c ; 25 : 582 – 93.en_US
dc.identifier.citedreferenceCoulter DA, Hugenard JR, Prince DA. Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: calcium current reduction. Br J Pharmacol 1990 ; 100 : 800 – 6.en_US
dc.identifier.citedreferenceCutting GR, Lu L., O'Hara BF, et al. Cloning of the Γ-aminobutyric acid (GABA) p 1 cDNA: a GABA receptor subunit highly expressed in the retina. Proc Natl Acad Sci USA 1991 ; 88 : 2673 – 7.en_US
dc.identifier.citedreferenceDeLorey TM, Olsen RW. Γ-Aminobutyric acid A receptor structure and function. J Biol Chem 1992 ; 267 : 16747 – 50.en_US
dc.identifier.citedreferenceDooley DJ, Bartoszyk GD, Rock DM, Satzinger G. Preclinical characterization of the anticonvulsant gabapentin. Book of abstracts. XVIth Epilepsy International Congress, Hamburg, Germany, 1985.en_US
dc.identifier.citedreferenceFoot M., Wallace J. Gabapentin. Epilepsy Res 1991 ( suppl 3 ): 109 – 14.en_US
dc.identifier.citedreferenceGordon R., Gels M., Diamantis W., Sofia RD. Interaction of felbamate and diazepam against maximal electroshock seizures and chemoconvulsants in mice. Pharmacol Biochem Behav 1991 ; 40 : 109 – 13.en_US
dc.identifier.citedreferenceHaas HL, Wieser HG. Gabapentin: action on hippocampal slices of the rat and effects in human epileptics. Northern European Epilepsy Meeting, York, England, 1986 ;.en_US
dc.identifier.citedreferenceKelly KM, Gross RA, Macdonald RL. Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci Lett 1990 ; 116 : 233 – 8.en_US
dc.identifier.citedreferenceKelly KM, Rock DM, Macdonald RL. Gabapentin does not affect NMDA receptor currents or voltage-dependent calcium currents in cultured rodent neurons. Ann Neurol 1991 ; 30 : 292.en_US
dc.identifier.citedreferenceKlepner CA, Lippa AS, Benson DI, Sano MC, Beer B. Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol Biochem Behav 1978 ; 11 : 457 – 62.en_US
dc.identifier.citedreferenceKondo T., Fromm GH, Schmidt B. Comparison of gabapentin with other antiepileptic and GABAergic drugs. Epilepsy Res 1991 ; 8 : 226 – 31.en_US
dc.identifier.citedreferenceLeach MJ, Marden CM, Miller AA. Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: II. Neurochemical studies on the mechanism of action. Epilepsia 1986 ; 27 : 490 – 7.en_US
dc.identifier.citedreferenceLoscher W., Honack D., Taylor CP. Gabapentin increases aminooxyacetic acid-induced GABA accumulation in several regions of rat brain. Neurosci Lett 1991 ; 128 : 150 – 4.en_US
dc.identifier.citedreferenceMacdonald RL. Antiepileptic drug actions. Epilepsia 1989 ; 30 ( suppl 1 ): S19 – 28.en_US
dc.identifier.citedreferenceMacdonald RL, Rogers CJ, Twyman RE. Kinetic properties of the GABA A receptor main-conductance state of mouse spinal cord neurons in culture. J Physiol 1989a ; 410 : 479 – 99.en_US
dc.identifier.citedreferenceMacdonald RL, Rogers CJ, Twyman RE. Barbiturate regulation of kinetic properties of the GABA A receptor channel of mouse spinal neurones in culture. J Physiol 1989b ; 417 : 483 – 500.en_US
dc.identifier.citedreferenceMcLean MJ, Macdonald RL. Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. J Pharmacol Exp Ther 1983 ; 227 : 779 – 89.en_US
dc.identifier.citedreferenceMcLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986a ; 237 : 1001 – 11.en_US
dc.identifier.citedreferenceMcLean MJ, Macdonald RL. Carbamazepine and 10,11-epoxy-carbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986b ; 238 : 727 – 32.en_US
dc.identifier.citedreferenceMiller AA, Wheatley P., Sawyer DA, Baxter MG, Roth B. Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: I. Anticonvulsant profile in mice and rats. Epilepsia 1986 ; 27 : 483 – 89.en_US
dc.identifier.citedreferenceMintz IM, Adams ME, Bean BP. P-type calcium channels in rat central and peripheral neurons. Neuron 1992 ; 9 : 85 – 95.en_US
dc.identifier.citedreferenceMoss SJ, Smart TG, Porter NM, et al. Cloned GABA receptors are maintained in a stable cell line: allosteric and channel properties. Eur J Pharmacol 1990 ; 189 : 77 – 88.en_US
dc.identifier.citedreferenceNowycky MC, Fox AP, Tsien RW. Three types of neuronal calcium channels with different agonist sensitivity. Nature 1985 ; 316 : 440 – 3.en_US
dc.identifier.citedreferenceOles RJ, Singh L., Hughes J., Woodruff GN. The anticonvulsant action of gabapentin involves the glycine/NMDA receptor. Soc Neurosci Abs 1990 ; 16 : 783.en_US
dc.identifier.citedreferenceOlsen RW. The Γ-aminobutyric acid/benzodiazepine/barbiturate receptor-chloride ion channel complex of mammalian brain. In : Edelman Gall, Cowan, eds. Synaptic function. New York : John Wiley & Sons, 1987 : 257 – 71.en_US
dc.identifier.citedreferencePritchett DB, Luddens H., Seeburg PH. Type I and type II GABA A -benzodiazepine receptors produced in transfected cells. Science 1989a ; 245 : 1389 – 92.en_US
dc.identifier.citedreferencePritchett DB, Sontheimer H., Shivers BD, et al. Importance of a novel GABA A receptor subunit for benzodiazepine pharmacology. Nature 1989b ; 338 : 582 – 4.en_US
dc.identifier.citedreferenceReimann W. Inhibition by GABA, baclofen, and gabapentin of dopamine release from rabbit caudate nucleus: are there common or different sites of action? Eur J Pharmacol 1983 ; 94 : 341 – 4.en_US
dc.identifier.citedreferenceReynolds EH, Milner G., Matthews DM, Chanarin I. Anticonvulsant therapy, megaloblastic haemopoiesis and folic acid metabolism. J Med 1966 ; 35 : 521 – 37.en_US
dc.identifier.citedreferenceRogawski MA, Porter RJ. Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 1990 ; 42 : 223 – 86.en_US
dc.identifier.citedreferenceRogers CJ, Twyman RE, Macdonald RL. The benzodiazepine diazepam and the beta-carboline DMCM modulate GABA A receptor currents by opposite mechanisms. Soc Neurosci Abstr 1989 ; 15 : 1150.en_US
dc.identifier.citedreferenceRowan AJ, Schear MJ, Wiener JA, Luciano D. Intensive monitoring and pharmacokinetic studies of gabapentin in patients with generalized spike-wave discharges. Epilepsia 1989 : 30 : 661.en_US
dc.identifier.citedreferenceSchlicker E., Reimann W., Gothert M. Gabapentin decreases monoamine release without affecting acetylcholine release in the brain. Arzneimittelforschung 1985 ; 35 : 1347 – 9.en_US
dc.identifier.citedreferenceSchmidt B. Potential antiepileptic drugs: gabapentin. In : Penry, JK, eds. Antiepileptic drugs, 3rd edition. New York : Raven Press, 1989 : 925 – 35.en_US
dc.identifier.citedreferenceSchofield PR, Darlison MG, Fujita N., et al. Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family. Nature 1987 ; 328 : 221 – 7.en_US
dc.identifier.citedreferenceSchwarz DJ, Grigat G. Phenytoin and carbamazepine: potential- and frequency-dependent block of Na currents in mammalian myelinated nerve fibers. Epilepsia 1989 ; 30 : 286 – 94.en_US
dc.identifier.citedreferenceShivers BD, Killisch I., Sprengel R., et al. Two novel GABA A receptor subunits exist in distinct neuronal subpopulations. Neuron 1989 ; 3 : 327 – 37.en_US
dc.identifier.citedreferenceSofia RD, Kramer L., Perhach JL, Rosenberg A. Felbamate. Epilepsy Res 1991 ( suppl 3 ): 103 – 8.en_US
dc.identifier.citedreferenceStudy RE, Barker JL. Diazepam and (-)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of Γ-aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sci USA 1981 ; 78 : 7180 – 4.en_US
dc.identifier.citedreferenceSwinyard EA, Sofia RD, Kupferberg HJ. Comparative anticonvulsant activity and neurotoxicity of felbamate and four prototype antiepileptic drugs in mice and rats. Epilepsia 1986 ; 27 : 27 – 34.en_US
dc.identifier.citedreferenceTaylor CP, Rock DM, Weinkauf RJ, Ganong AH. In vitro and in vivo electrophysiology effects of the anticonvulsant gabapentin. Soc Neurosci Abs 1988 ; 14 : 866.en_US
dc.identifier.citedreferenceTaylor CP, Vartanian MG, Yuen PW, Bigge C. Potent and stereo-specific anticonvulsant activity of 3-isobutyl GABA relates to in vitro binding at a novel site labeled by tritiated gabapentin. Epilepsy Res 1993 ; 14 : 11 – 15.en_US
dc.identifier.citedreferenceTicku MK, Kamatchi GL, Sofia RD. Effect of anticonvulsant felbamate on GABA A receptor system. Epilepsia 1991 ; 32 : 389 – 91.en_US
dc.identifier.citedreferenceTomaselli G., Marban E., Yellen G. Sodium channels from human brain RNA expressed in Xenopus oocytes: basic electrophysiologic characteristics and their modifications by diphenylhydantoin. J Clin Invest 1989 ; 83 : 1724 – 32.en_US
dc.identifier.citedreferenceTwyman RE, Rogers CJ, Macdonald RL. Differential regulation of Γ-aminobutyric acid receptor channels by diazepam and phenobarbital. Ann Neurol 1989 ; 25 : 213 – 20.en_US
dc.identifier.citedreferenceTwyman RE, Rogers CJ, Macdonald RL. Intraburst kinetic properties of the GABA A receptor main conductance state of mouse spinal cord neurones in culture. J Physiol 1990 ; 423 : 193 – 219.en_US
dc.identifier.citedreferenceVerdoorn TA, Draguhn A., Ymer S., Seeburg PH, Sakmann B. Functional properties of recombinant rat GABA A receptors depend upon subunit composition. Neuron 1990 ; 4 : 919 – 28.en_US
dc.identifier.citedreferenceVicini S., Mienville JM, Costa E. Actions of benzodiazepine and Β-carboline derivatives on Γ-aminobutyric acid-activated Cl - channels recorded from membrane patches of neonatal rat cortical neurons in culture. J Pharmacol Exp Ther 1987 ; 243 : 1195 – 1201.en_US
dc.identifier.citedreferenceWakamori M., Kaneda M., Oyama Y., Akaike N. Effects of chlordiazepoxide, chlorpromazine, diazepam, diphenylhydantoin, flunitrazepam and haloperidol on the voltage-dependent sodium current of isolated mammalian brain neurons. Brain Res 1989 ; 494 : 374 – 8.en_US
dc.identifier.citedreferenceWamil AW, McLean MJ, Taylor CP. Multiple cellular actions of gabapentin. Neurology 1991a ; 41 ( suppl 1 ): 140.en_US
dc.identifier.citedreferenceWamil AW, Taylor CP, McLean MJ. Effects of gabapentin on repetitive firing of action potentials and GABA responses of mouse central neurons in cell culture. Epilepsia 1991b ; 32 : 20 – 1.en_US
dc.identifier.citedreferenceWeiss DS, Magleby K. Gating scheme for single GABA-activated CI channels determined from stability plots, dwell-time distributions, and adjacent-interval durations. J Neurosci 1989 ; 9 : 1314 – 24.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.