Show simple item record

The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowl

dc.contributor.authorDaley, Monica A.en_US
dc.contributor.authorVoloshina, Alexandraen_US
dc.contributor.authorBiewener, Andrew A.en_US
dc.date.accessioned2010-04-01T15:48:51Z
dc.date.available2010-04-01T15:48:51Z
dc.date.issued2009-06-01en_US
dc.identifier.citationDaley, Monica A.; Voloshina, Alexandra; Biewener, Andrew A. (2009). "The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowl." The Journal of Physiology 587(11): 2693-2707. <http://hdl.handle.net/2027.42/66308>en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66308
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19359369&dopt=citationen_US
dc.format.extent475957 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 The Physiological Societyen_US
dc.titleThe role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowlen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumHuman Neuromechanics Laboratory, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherStructure and Motion Laboratory, The Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UKen_US
dc.contributor.affiliationotherConcord Field Station, Harvard University, 100 Old Causeway Road, Bedford, MA 01703, USAen_US
dc.identifier.pmid19359369en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66308/1/jphysiol.2009.171017.pdf
dc.identifier.doi10.1113/jphysiol.2009.171017en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceAhn AN & Full RJ ( 2002 ). A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect. J Exp Biol 205, 379 – 389.en_US
dc.identifier.citedreferenceAhn AN, Monti RJ & Biewener AA ( 2003 ). In vivo and in vitro heterogeneity of segment length changes in the semimem branosus muscle of the toad. J Physiol 549, 877 – 888.en_US
dc.identifier.citedreferenceAlexander RM ( 1989 ). Optimization and gaits in the locomotion of vertebrates. Physiol Rev 69, 1199 – 1227.en_US
dc.identifier.citedreferenceAlexander RM ( 1992 ). The work that muscles can do. Nature 357, 360.en_US
dc.identifier.citedreferenceAskew GN & Marsh RL ( 1998 ). Optimal shortening velocity ( V / V max ) of skeletal muscle during cyclical contractions: length–force effects and velocity-dependent activation and deactivation. J Exp Biol 201, 1527 – 1540.en_US
dc.identifier.citedreferenceAzizi E, Brainerd EL & Roberts TJ ( 2008 ). Variable gearing in pennate muscles. Proc Natl Acad Sci U S A 105, 1745 – 1750.en_US
dc.identifier.citedreferenceBenjamini Y & Hochberg Y ( 1995 ). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57, 289 – 300.en_US
dc.identifier.citedreferenceBiewener AA & Corning WR ( 2001 ). Dynamics of mallard ( Anas platyrhynchos ) gastrocnemius function during swimming versus terrestrial locomotion. J Exp Biol 204, 1745 – 1756.en_US
dc.identifier.citedreferenceBiewener AA & Daley MA ( 2007 ). Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control. J Exp Biol 210, 2949 – 2960.en_US
dc.identifier.citedreferenceBiewener AA, Konieczynski DD & Baudinette RV ( 1998 ). In vivo muscle force–length behavior during steady speed hopping in tammar wallabies. J Exp Biol 201, 1681 – 1694.en_US
dc.identifier.citedreferenceBiewener AA & Roberts RJ ( 2000 ). Muscle and tendon contributions to force, work, and elastic energy savings: A comparative perspective. Exerc Sport Sci Rev 28, 99 – 107.en_US
dc.identifier.citedreferenceBrown IE & Loeb GE ( 2000 ). A reductionist approach to creating and using neuromechanical models. In Biomechanics and Neural Control of Posture and Movement, ed. Winters JM & Crago PE, pp. 148 – 163. Springer-Verlag, New York.en_US
dc.identifier.citedreferenceCapaday C & Stein RB ( 1987 ). Difference in the amplitude of the human soleus H reflex during walking and running. J Physiol 392, 513 – 522.en_US
dc.identifier.citedreferenceCurran-Everett D ( 2000 ). Multiple comparisons: philosophies and illustrations. Am J Physiol Regul Integr Comp Physiol 279, R1 – 8.en_US
dc.identifier.citedreferenceDaley MA & Biewener AA ( 2003 ). Muscle force–length dynamics during level versus incline locomotion: a comparison of in vivo performance of two guinea fowl ankle extensors. J Exp Biol 206, 2941 – 2958.en_US
dc.identifier.citedreferenceDaley MA & Biewener AA ( 2006 ). Running over rough terrain reveals limb control for intrinsic stability. Proc Natl Acad Sci U S A 103, 15681 – 15686.en_US
dc.identifier.citedreferenceDaley MA, Felix G & Biewener AA ( 2007 ). Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control. J Exp Biol 210, 383 – 394.en_US
dc.identifier.citedreferenceDaley MA, Usherwood JR, Felix G & Biewener AA ( 2006 ). Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height. J Exp Biol 209, 171 – 187.en_US
dc.identifier.citedreferenceDelp SL & Loan JP ( 1995 ). A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput Biol Med 25, 21 – 34.en_US
dc.identifier.citedreferenceDickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R & Lehman S ( 2000 ). How animals move: an integrative view. Science 288, 100 – 106.en_US
dc.identifier.citedreferenceDietz V ( 1996 ). Interaction between central programs and afferent input in the control of posture and locomotion. J Biomech 29, 841 – 844.en_US
dc.identifier.citedreferenceDietz V, Quintern J & Sillem M ( 1987 ). Stumbling reactions in man – significance of proprioceptive and pre-programmed mechanisms. J Physiol 386, 149 – 163.en_US
dc.identifier.citedreferenceEdman KAP ( 1980 ). Depression of mechanical performance by active shortening during twitch and tetanus of vertebrate muscle fibres. Acta Physiol Scand 109, 15 – 26.en_US
dc.identifier.citedreferenceEdman KAP, Elzinga G & Noble MIM ( 1978 ). Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J Physiol 281.en_US
dc.identifier.citedreferenceFerris DP, Aagaard P, Simonsen EB, Farley CT & Dyhre-Poulsen P ( 2001 ). Soleus H-reflex gain in humans walking and running under simulated reduced gravity. J Physiol 530, 167 – 180.en_US
dc.identifier.citedreferenceGabaldon AM, Nelson FE & Roberts TJ ( 2004 ). Mechanical function of two ankle extensors in wild turkeys: shifts from energy production to energy absorption during incline versus decline running. J Exp Biol 207, 2277 – 2288.en_US
dc.identifier.citedreferenceGatesy SM & Biewener AA ( 1991 ). Bipedal locomotion: effects of speed, size and limb posture in birds and humans. J Zool (Lond) 224, 127 – 147.en_US
dc.identifier.citedreferenceGorassini MA, Prochazka A, Hiebert GW & Gauthier MJA ( 1994 ). Corrective responses to loss of ground support during walking. 1. Intact cats. J Neurophysiol 71, 603 – 610.en_US
dc.identifier.citedreferenceGranzier HL & Pollack GH ( 1989 ). Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres. J Physiol 415, 299 – 327.en_US
dc.identifier.citedreferenceHerbert RD & Gandevia SC ( 1995 ). Changes in pennation with joint angle and muscle torque: in vivo measurements in human brachialis muscle. J Physiol 484, 523 – 532.en_US
dc.identifier.citedreferenceHiebert GW, Gorassini MA, Jiang W, Prochazka A & Pearson KG ( 1994 ). Corrective responses to loss of ground support during walking. 2. Comparison of intact and chronic spinal cats. J Neurophysiol 71, 611 – 622.en_US
dc.identifier.citedreferenceHiebert GW & Pearson KG ( 1999 ). Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate cat. J Neurophysiol 81, 758 – 770.en_US
dc.identifier.citedreferenceHigham TE, Biewener AA & Wakeling JM ( 2008 ). Functional diversification within and between muscle synergists during locomotion. Biol Lett 4, 41 – 44.en_US
dc.identifier.citedreferenceJindrich DL & Full RJ ( 2002 ). Dynamic stabilization of rapid hexapedal locomotion. J Exp Biol 205, 2803 – 2823.en_US
dc.identifier.citedreferenceJosephson RK ( 1993 ). Contraction dynamics and power output of skeletal muscle. Annu Rev Physiol 55, 527 – 546.en_US
dc.identifier.citedreferenceJosephson RK ( 1999 ). Dissecting muscle power output. J Exp Biol 202, 3369 – 3375.en_US
dc.identifier.citedreferenceKubow TM & Full RJ ( 1999 ). The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Philos Trans R Soc Lond B Biol Sci 354, 849 – 861.en_US
dc.identifier.citedreferenceLichtwark GA & Wilson AM ( 2006 ). Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. J Exp Biol 209, 4379 – 4388.en_US
dc.identifier.citedreferenceMarigold DS & Patla AE ( 2005 ). Adapting locomotion to different surface compliances: Neuromuscular responses and changes in movement dynamics. J Neurophysiol 94, 1733 – 1750.en_US
dc.identifier.citedreferenceMarsh RL ( 1999 ). How muscles deal with real-world loads: The influence of length trajectory on muscle performance. J Exp Biol 202, 3377 – 3385.en_US
dc.identifier.citedreferenceMcGowan CP, Duarte HA, Main JB & Biewener AA ( 2006 ). Effects of load carrying on metabolic cost and hindlimb muscle dynamics in guinea fowl ( Numida meleagris ). J Appl Physiol 101, 1060 – 1069.en_US
dc.identifier.citedreferenceMcGowan CP, Neptune RR & Kram R ( 2008 ). Independent effects of weight and mass on plantar flexor activity during walking: implications for their contributions to body support and forward propulsion. J Appl Physiol 105, 486 – 494.en_US
dc.identifier.citedreferenceMoritz CT & Farley CT ( 2004 ). Passive dynamics change leg mechanics for an unexpected surface during human hopping. J Appl Physiol 97, 1313 – 1322.en_US
dc.identifier.citedreferenceNichols TR ( 1994 ). A biomechanical perspective on spinal mechanisms of coordinated muscular action: an architecture principle. Acta Anat (Basel) 151, 1 – 13.en_US
dc.identifier.citedreferenceNichols TR & Houk JC ( 1973 ). Reflex compensation for variations in the mechanical properties of a muscle. Science 181, 182 – 184.en_US
dc.identifier.citedreferenceNishikawa K, Biewener AA, Aerts P, Ahn AN, Chiel HJ, Daley MA, Daniel TL, Full RJ, Hale ME, Hedrick TL, Lappin AK, Nichols TR, Quinn RD, Satterlie RA & Szymik B ( 2007 ). Neuromechanics: an integrative approach for understanding motor control. Integr Comp Biol 47, 16 – 54.en_US
dc.identifier.citedreferencePatla AE & Prentice SD ( 1995 ). The role of active forces and intersegmental dynamics in the control of limb trajectory over obstacles during locomotion in humans. Exp Brain Res 106, 499 – 504.en_US
dc.identifier.citedreferencePearson K, Ekeberg O & Buschges A ( 2006 ). Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci 29, 625 – 631.en_US
dc.identifier.citedreferencePearson KG, Misiaszek JE & Fouad K ( 1998 ). Enhancement and resetting of locomotor activity by muscle afferents. In Neuronal Mechanisms for Generating Locomotor Activity, ed. Kiehn O, Harris-Warrick RM, Jordan LM, Hultborn H & Kudo N, pp. 203 – 215.en_US
dc.identifier.citedreferencePerreault EJ, Heckman CJ & Sandercock TG ( 2003 ). Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates. J Biomech 36, 211 – 218.en_US
dc.identifier.citedreferencePrilutsky BI, Herzog W & Allinger TL ( 1996 ). Mechanical power and work of cat soleus, gastrocnemius and plantaris muscles during locomotion: possible functional significance of mucle design and force patterns. J Exp Biol 199, 801 – 814.en_US
dc.identifier.citedreferenceRoberts TJ, Kram R, Weyand PG & Taylor CR ( 1998 ). Energetics of bipedal running I. Metabolic cost of generating force. J Exp Biol 201, 2745 – 2751.en_US
dc.identifier.citedreferenceRoberts TJ, Marsh RL, Weyand PG & Taylor CR ( 1997 ). Muscular force in running turkeys: the economy of minimizing work. Science 275, 1113 – 1115.en_US
dc.identifier.citedreferenceRoberts TJ & Scales JA ( 2004 ). Adjusting muscle function to demand: joint work during acceleration in wild turkeys. J Exp Biol 207, 4165 – 4174.en_US
dc.identifier.citedreferenceSandercock TG & Heckman CJ ( 1997 ). Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions. J Neurophysiol 77, 1538 – 1552.en_US
dc.identifier.citedreferenceSeyfarth A, Geyer H & Herr H ( 2003 ). Swing-leg retraction: a simple control model for stable running. J Exp Biol 206, 2547 – 2555.en_US
dc.identifier.citedreferenceSmith NC, Wilson AM, Jespers KJ & Payne RC ( 2006 ). Muscle architecture and functional anatomy of the pelvic limb of the ostrich ( Struthio camelus ). J Anat 209, 765 – 779.en_US
dc.identifier.citedreferenceSokal RR & Rohlf FJ ( 1995 ). Biometry: The Principles and Practice of Statistics in Biological Research. W. H. Freeman and Co., New York.en_US
dc.identifier.citedreferenceSponberg S & Full RJ ( 2008 ). Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain. J Exp Biol 211, 433 – 446.en_US
dc.identifier.citedreferencevon Tscharner V ( 2000 ). Intensity analysis in time-frequency space of surface myoelectric signals by wavelets of specified resolution. J Electromyogr Kinesiol 10, 433 – 445.en_US
dc.identifier.citedreferenceWakeling JM, Kaya M, Temple GK, Johnston IA & Herzog W ( 2002 ). Determining patterns of motor recruitment during locomotion. J Exp Biol 205, 359 – 369.en_US
dc.identifier.citedreferenceZajac FE ( 1989 ). Muscle and tendon – properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17, 359 – 411.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.