Show simple item record

Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments

dc.contributor.authorGhosh, Debashisen_US
dc.date.accessioned2010-04-01T15:50:26Z
dc.date.available2010-04-01T15:50:26Z
dc.date.issued2003-09en_US
dc.identifier.citationGhosh, Debashis (2003). "Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments." Biometrics 59(3): 721-726. <http://hdl.handle.net/2027.42/66335>en_US
dc.identifier.issn0006-341Xen_US
dc.identifier.issn1541-0420en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66335
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14601774&dopt=citationen_US
dc.description.abstractIn tumorigenicity experiments, a complication is that the time to event is generally not observed, so that the time to tumor is subject to interval censoring. One of the goals in these studies is to properly model the effect of dose on risk. Thus, it is important to have goodness of fit procedures available for assessing the model fit. While several estimation procedures have been developed for current-status data, relatively little work has been done on model-checking techniques. In this article, we propose numerical and graphical methods for the analysis of current-status data using the additive-risk model, primarily focusing on the situation where the monitoring times are dependent. The finite-sample properties of the proposed methodology are examined through numerical studies. The methods are then illustrated with data from a tumorigenicity experiment.en_US
dc.format.extent144538 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishingen_US
dc.rightsThe International Biometric Society, 2003en_US
dc.subject.otherAdditive Hazardsen_US
dc.subject.otherCurrent-status Dataen_US
dc.subject.otherInterval Censoringen_US
dc.subject.otherResidual Ploten_US
dc.subject.otherSurvival Analysisen_US
dc.titleGoodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experimentsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, Michigan 48109-2029, U.S.A.en_US
dc.identifier.pmid14601774en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66335/1/1541-0420.00083.pdf
dc.identifier.doi10.1111/1541-0420.00083en_US
dc.identifier.sourceBiometricsen_US
dc.identifier.citedreferenceBreslow, N. and Day, N. E. ( 1980 ). Statistical Methods in Cancer Research, Volume 1: The Analysis of Case-Control Studies. Lyon : World Health Organization.en_US
dc.identifier.citedreferenceBreslow, N. and Day, N. E. ( 1987 ). Statistical Methods in Cancer Research, Volume 2: The Design and Analysis of Cohort Studies. Lyon : World Health Organization.en_US
dc.identifier.citedreferenceCox, D. R. ( 1972 ). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B 34, 187 220.en_US
dc.identifier.citedreferenceDinse, G. E. and Lagakos, S. W. ( 1983 ). Regression analysis of tumour prevalence data. Applied Statistics 32, 236 248.en_US
dc.identifier.citedreferenceFarrington, C. P. ( 2000 ). Residuals for proportional hazards models with interval-censored survival data. Biometrics 56, 473 482.en_US
dc.identifier.citedreferenceGhosh, D. ( 2001 ). Efficiency considerations in the additive hazards model with current status data. Statistica Neerlandica 55, 367 376.en_US
dc.identifier.citedreferenceHoel, D. G. and Walburg, H. E. ( 1972 ). Statistical analysis of survival experiments. Journal of the National Cancer Institute 45, 361 372.en_US
dc.identifier.citedreferenceLin, D. Y. and Ying, Z. ( 1994 ). Semiparametric analysis of the additive risk model. Biometrika 81, 61 71.en_US
dc.identifier.citedreferenceLin, D. Y., Wei, L. J. and Ying, Z. ( 1993 ). Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80, 557 572.en_US
dc.identifier.citedreferenceLin, D. Y., Oakes, D., and Ying, Z. ( 1998 ). Additive hazards regression with current status data. Biometrika 85, 289 298.en_US
dc.identifier.citedreferenceLin, D. Y., Wei, L. J., Yang, I. and Ying, Z. ( 2000 ). Semiparametric regression for the mean and rate functions of recurrent events. Journal of the Royal Statistical Society, Series B 62, 711 730.en_US
dc.identifier.citedreferenceMartinussen, T. and Scheike, T. H. ( 2002 ). Efficient estimation in additive hazards regression with current status data. Biometrika 89, 649 658.en_US
dc.identifier.citedreferenceSchoenfeld, D. ( 1982 ). Partial residuals for the proportional hazards regression model. Biometrika 69, 239 241.en_US
dc.identifier.citedreferenceTherneau, T. M., Grambsch, P. M. and Fleming, T. R., ( 1990 ). Martingale-based residuals for survival models. Biometrika 77, 147 160.en_US
dc.identifier.citedreferenceYounes, N. and Lachin, J. ( 1997 ). Link-based models for survival data with interval and continuous time censoring. Biometrics 53, 1199 1211.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.