Show simple item record

TEMPERATURE EFFECTS ON SILICON LIMITED GROWTH OF THE LAKE MICHIGAN DIATOM STEPHANODISCUS MINUTUS (BACILLARIOPHYCEAE) 1

dc.contributor.authorMechling, Joyce A.en_US
dc.contributor.authorKilham, Susan Soltauen_US
dc.date.accessioned2010-04-01T15:50:33Z
dc.date.available2010-04-01T15:50:33Z
dc.date.issued1982-06en_US
dc.identifier.citationMechling, Joyce A . ; Kilham, Susan Soltau (1982). "TEMPERATURE EFFECTS ON SILICON LIMITED GROWTH OF THE LAKE MICHIGAN DIATOM STEPHANODISCUS MINUTUS (BACILLARIOPHYCEAE) 1 ." Journal of Phycology 18(2): 199-205. <http://hdl.handle.net/2027.42/66337>en_US
dc.identifier.issn0022-3646en_US
dc.identifier.issn1529-8817en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66337
dc.description.abstractThe effect of temperature on the silicon limited growth and nutrient kinetics of Stephanodiscus minutus Grun. was examined using batch and semicontinuous culture methods. Short-term batch culture methods gave maximum growth rates which were essentially constant over the temperature range of 10° to 20°C (Μ 3 = 0.71–0.80 d −1 ). The half-saturation constant for growth (K s ) was significantly lowest at 10°C (K s = 0.31 ΜM Si; 0.22–0.41), and higher at both 15°C (K s = 1.03 ΜM Si; 0.68–1.47) and 20°C (K s = 0.88 ΜM Si; 0.60–1.22). Two methods were used to evaluate the semicontinuous experiments. The Droop relationship showed that the minimum cell quota was about 1.50 × 10 −7 nmol Si cell −1 , but there was much overlap in the results at all three temperatures. The Monod growth relationship for the semicontinuous experiments gave estimates of K s which were lowest at 15°C (K s = 0.12 ΜM Si), and higher at 10°C (K s = 0.68 ΜM Si) and 20°C (K s = 1.24 ΜM Si), although 95% confidence intervals overlapped. The maximum growth rate estimates for the semicontinuous experiments were similar at 10° and 15°, and higher at 20°C, but the number of points used in making the calculations makes the results less reliable than those from batch cultures. Generally, there were no consistent significant differences in the silicon limited growth of S. minutus over the temperature range studied. Our values of K s for S. minutus are the lowest recorded for a freshwater diatom, and are consistent with the distribution of this species in nature. Generally, this species becomes abundant in areas with high phosphorus loading and very low silicon levels (low Si:P loading rates). Stephanodiscus species are also fossil indicators of eutrophication in north temperate lakes.en_US
dc.format.extent1172566 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/octet-stream
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1982, by the Phycological Society of America, Inc.en_US
dc.subject.otherDiatomsen_US
dc.subject.otherNutrient Kineticsen_US
dc.subject.otherNutrient Limitationen_US
dc.subject.otherSiliconen_US
dc.subject.otherStephanodiscusen_US
dc.subject.otherTemperatureen_US
dc.titleTEMPERATURE EFFECTS ON SILICON LIMITED GROWTH OF THE LAKE MICHIGAN DIATOM STEPHANODISCUS MINUTUS (BACILLARIOPHYCEAE) 1en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivision of Biological Sciences, Natural Science Building, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66337/1/j.1529-8817.1982.tb03174.x.pdf
dc.identifier.doi10.1111/j.1529-8817.1982.tb03174.xen_US
dc.identifier.sourceJournal of Phycologyen_US
dc.identifier.citedreferenceAhlgren, G. 1978. Growth of Oscillatoria agardhii in chemostat culture. 2. Dependence of growth constants on temperature. Mitt. Int. Ver. Theor. Angew. Limnol. 21 : 88 – 102.en_US
dc.identifier.citedreferenceBliss, C. I. & James, A. T. 1966. Fitting the rectangular hyperbola. Biometrics 22 : 573 – 602.en_US
dc.identifier.citedreferenceBraarud, T. 1961. Cultivation of marine organisms as a means of understanding environmental influences on populations. In Sears, M., [ Ed. ] Oceanography. American Association for the Advancement of Science Publ. 67. Washington, D.C., pp. 271 – 98.en_US
dc.identifier.citedreferenceBradbury, J. P. & Megard, R. O. 1972. Stratigraphic record of pollution in Shagawa Lake Northeastern Minnesota. Geol. Soc. Am. Bull. 83 : 2639 – 48.en_US
dc.identifier.citedreferenceDanforth, W. F. & Ginsburg, W. 1980. Recent changes in the phytoplankton of Lake Michigan near Chicago. J. Great Lakes Res. 6 : 307 – 14.en_US
dc.identifier.citedreferenceDroop, M. R. 1974. The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc. U.K. 54 : 825 – 55.en_US
dc.identifier.citedreferenceDugdale, R. C. 1967. Nutrient limitation in the sea: dynamics, identification, and significance. Limnol. Oceanogr. 12 : 685 – 95.en_US
dc.identifier.citedreferenceEppley, R. W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70 : 1063 – 85.en_US
dc.identifier.citedreferenceEppley, R. W. 1977. The growth and culture of diatoms. In Werner, D., [ Ed. ] The Biology of Diatoms. Blackwell, Oxford, pp. 24 – 64.en_US
dc.identifier.citedreferenceEppley, R. W., Rogers, J. N. & McCarthy, J. J. 1969. Half-saturation constants for uptake of nitrogen and ammonium by marine phytoplankton. Limnol. Oceanogr. 14 : 912 – 20.en_US
dc.identifier.citedreferenceGoldman, J. C. 1977. Temperature effects on phytoplankton growth in continuous culture. Limnol. Oceanogr. 22 : 932 – 6.en_US
dc.identifier.citedreferenceGoldman, J. C. & Carpenter, E. J. 1974. A kinetic approach to the effect of temperature on algal growth. Limnol. Oceanogr. 19 : 756 – 66.en_US
dc.identifier.citedreferenceGoldman, J. C. & McCarthy, J. J. 1978. Steady state growth and ammonium uptake of a fast-growing diatom. Limnol. Oceanogr. 23 : 695 – 703.en_US
dc.identifier.citedreferenceGoldman, J. C. & Ryther, J. H. 1976. Temperature-influenced species competition in mass cultures of marine phytoplankton. Biotechnol. Bioengin. 18 : 1125 – 44.en_US
dc.identifier.citedreferenceGuillard, R. R. L. 1973a. Methods for microflagellates and nannoplankton. In Stein, J. R., [ Ed. ] Handbook of Phycological Methods, Culture Methods and Growth Measurements. Cambridge, New York, pp. 69 – 85.en_US
dc.identifier.citedreferenceGuillard, R. R. L. 1973b. Division rates. In Stein, J. R., [ Ed. ] Handbook of Phycological Methods, Culture Methods and Growth Measurements. Cambridge, New York, pp. 289 – 312.en_US
dc.identifier.citedreferenceGuillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W. L. & Chanley, M. H., [ Eds. ] Culture of Marine Invertebrate Animals. Plenum, New York, pp. 29 – 60.en_US
dc.identifier.citedreferenceGuillard, R. R. L. & Kilham, P. 1977. The ecology of marine planktonic diatoms. In Werner, D., [ Ed. ] The Biology of Diatoms. Blackwell, Oxford, pp. 372 – 469.en_US
dc.identifier.citedreferenceHanson, K. R., Ling, R. & Havir, E. 1967. A computer program for fitting data to the Michaelis-Menten equation. Biochem. Biophys. Res. Commun. 29 : 194 – 7.en_US
dc.identifier.citedreferenceHealey, F. P. 1980. Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb. Ecol. 5 : 281 – 6.en_US
dc.identifier.citedreferenceHolland, R. E. & Claflin, L. W. 1975. Horizontal distribution of planktonic diatoms in Green Bay, mid-July 1970. Limnol. Oceanogr. 20 : 365 – 78.en_US
dc.identifier.citedreferenceHolm, N. P. & Arstrong, D. E. 1981. Role of nutrient limitation and competition in controlling the population of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol. Oceanogr. 26 : 622 – 34.en_US
dc.identifier.citedreferenceKilham, P. 1971. A hypothesis concerning silica and the freshwater planktonic diatoms. Limnol. Oceanogr. 16 : 10 – 8.en_US
dc.identifier.citedreferenceKilham, P. & Tilman, D. 1979. The importance of resource competition and nutrient gradients for phytoplankton ecology. Ergeb. Limnol. 13 : 110 – 19.en_US
dc.identifier.citedreferenceKilham, S. S. 1975. Kinetics of silicon-limited growth in the freshwater diatom Asterionella formosa. J. Phycol. 11 : 396 – 9.en_US
dc.identifier.citedreferenceKilham, S. S. 1978. Nutrient kinetics of freshwater planktonic algae using batch and semi-continuous methods. Mitt. Int. Ver. Them. Angew. Limnol. 21 : 147 – 57.en_US
dc.identifier.citedreferenceKilham, S. S. & Kilham, P. 1978. Natural community bioassays: predictions of results based on nutrient physiology and competition. Int. Ver. Them. Angew. Limnol. Verh. 20 : 68 – 74.en_US
dc.identifier.citedreferenceKilham, S. S. 1982. The importance of resource supply rates in determining phytoplankton community structure. In Meyers, D. G. & Strickler, J. R., [ Eds. ] Trophic Dynamics of Aquatic Ecosystems. American Association for the Advancement of Science Symposium, in press.en_US
dc.identifier.citedreferenceKilham, S. S., Kott, C. L. & Tilman, D. 1977. Phosphate and silicate kinetics for the Lake Michigan diatom Diatoma elongatum. J. Great Lakes Res. 3 : 93 – 99.en_US
dc.identifier.citedreferenceMonod, J. 1950. La technique de culture continue; theorie et applications. Ann. Inst. Pasteur Lille 79 : 390 – 410.en_US
dc.identifier.citedreferenceO'Brien, W. J. 1974. The dynamics of nutrient limitation of phytoplankton algae: a model reconsidered. Ecology 55 : 135 – 41.en_US
dc.identifier.citedreferencePaasche, E. 1973. Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) growth in a chemostat with silicate as limiting nutrient. Mar. Biol. (Berl.) 19 : 117 – 26.en_US
dc.identifier.citedreferencePaasche, E. 1975. Growth of the plankton diatom Thalassiosira nordenskioeldii Cleve at low silicate concentrations. J. Exp. Mar. Biol. 18 : 173 – 83.en_US
dc.identifier.citedreferencePetersen, R. 1975. The paradox of the plankton: an equilibrium hypothesis. Am. Nat. 109 : 35 – 49.en_US
dc.identifier.citedreferenceRhee, G-Y. 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 23 : 10 – 25.en_US
dc.identifier.citedreferenceRhee, G-Y. 1980. Continuous culture in phytoplankton ecology. In Droop, M. R. & Jannasch, H. W., [ Eds. ] Advances in Aquatic Microbiology, Vol. 2. Academic Press, New York, pp. 151 – 203.en_US
dc.identifier.citedreferenceRhee, G-Y. & Gotham, I. J. 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26 : 635 – 48.en_US
dc.identifier.citedreferenceRousar, D. C. & Beeton, A. M. 1973. Distribution of phosphorus, silica, chlorophyll a and conductivity in Lake Michigan and Green Bay. Wis. Acad. Sci. Arts Lett. 61 : 117 – 40.en_US
dc.identifier.citedreferenceSchelske, C. L. & Stoermer, E. F. 1971. Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan. Science (Wash. D.C.) 173 : 423 – 4.en_US
dc.identifier.citedreferenceSchelske, C. L., Rothman, E. D., Stoermer, E. F. & Santiago, M. A. 1974. Responses of phosphorus limited Lake Michigan phytoplankton to factorial enrichments with nitrogen and phosphorus. Limnol. Oceanogr. 19 : 409 – 19.en_US
dc.identifier.citedreferenceSmayda, T. J. 1969. Environmental observations on the influence of temperature, light, and salinity on cell division of the marine diatom Detonula conferuacea (Cleve) Gran. J. Phycol. 5 : 150 – 7.en_US
dc.identifier.citedreferenceStoermer, E. F. & Ladewski, T. B. 1976. Apparent optimal temperatures for the occurrence of some common phytoplankton species in southern Lake Michigan. University Michigan, Great Lakes Research Division, Pub. No. 18, 49 pp.en_US
dc.identifier.citedreferenceStoermer, E. F. & Yang, J. J. 1969. Plankton diatom assemblages in Lake Michigan. University Michigan, Great Lakes Research Division, Spec. Rep. No. 47, 268 pp.en_US
dc.identifier.citedreferenceStoermer, E. F. 1970. Distribution and relative abundance of dominant plankton diatoms in Lake Michigan. University Michigan, Great Lakes Research Division, Pub. No. 16, 64 pp.en_US
dc.identifier.citedreferenceStrickland, J. D. H. & Parsons, T. R. 1972. A Practical Manual of Seawater Analysis, 2nd Ed., Fish. Res. Board Can., Ottawa, Bull. 167, 311 pp.en_US
dc.identifier.citedreferenceThomas, W. H. & Dodson, A. H. 1974. Effect of interactions between temperature and nitrate supply on the cell division rates of two marine phytoflagellates. Mar. Biol. (Berl.) 24 : 213 – 7.en_US
dc.identifier.citedreferenceTilman, D. 1977. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58 : 338 – 48.en_US
dc.identifier.citedreferenceTilman, D. 1980. Resources: a graphical-mechanistic approach to competition and predation. Am. Nat. 116 : 362 – 93.en_US
dc.identifier.citedreferenceTilman, D. 1981. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62 : 802 – 15.en_US
dc.identifier.citedreferenceTilman, D. & Kilham, S. S. 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. J. Phycol. 12 : 375 – 83.en_US
dc.identifier.citedreferenceTilman, D., Mattson, M. & Langer, S. 1981. Competition and nutrient kinetics along a temperature gradient: an experimental test of a mechanistic approach to niche theory. Limnol. Oceanogr. 26 : 1020 – 33.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.