Show simple item record

Amphetamine-evoked gene expression in striatopallidal neurons: regulation by corticostriatal afferents and the ERK/MAPK signaling cascade

dc.contributor.authorFerguson, Susan M.en_US
dc.contributor.authorRobinson, Terry E.en_US
dc.date.accessioned2010-04-01T15:50:53Z
dc.date.available2010-04-01T15:50:53Z
dc.date.issued2004-10en_US
dc.identifier.citationFerguson, Susan M.; Robinson, Terry E. (2004). "Amphetamine-evoked gene expression in striatopallidal neurons: regulation by corticostriatal afferents and the ERK/MAPK signaling cascade." Journal of Neurochemistry 91(2): 337-348. <http://hdl.handle.net/2027.42/66343>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66343
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15447667&dopt=citationen_US
dc.description.abstractThe environmental context in which psychostimulant drugs are experienced influences their ability to induce immediate early genes (IEGs) in the striatum. When given in the home cage amphetamine induces IEGs predominately in striatonigral neurons, but when given in a novel test environment amphetamine also induces IEGs in striatopallidal neurons. The source of the striatopetal projections that regulate the ability of amphetamine to differentially engage these two striatofugal circuits has never been described. We report that transection of corticostriatal afferents selectively blocks, whereas enhancement of cortical activity with an ampakine selectively augments, the number of amphetamine-evoked c- fos -positive striatopallidal (but not striatonigral) neurons. In addition, blockade of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling cascade preferentially inhibits the number of amphetamine-evoked c- fos -positive striatopallidal neurons. These results suggest that glutamate released from corticostriatal afferents modulates the ability of amphetamine to engage striatopallidal neurons through an ERK/MAPK signaling-dependent mechanism. We speculate that this may be one mechanism by which environmental context facilitates some forms of drug experience-dependent plasticity, such as psychomotor sensitization.en_US
dc.format.extent349288 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2004 International Society for Neurochemistryen_US
dc.subject.otherCaudate Nucleusen_US
dc.subject.otherDopamineen_US
dc.subject.otherImmediate Early Genesen_US
dc.subject.otherIn Situ Hybridizationen_US
dc.subject.otherPsychostimulantsen_US
dc.subject.otherRaten_US
dc.titleAmphetamine-evoked gene expression in striatopallidal neurons: regulation by corticostriatal afferents and the ERK/MAPK signaling cascadeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Department of Psychology, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationother* Neuroscience Programen_US
dc.identifier.pmid15447667en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66343/1/j.1471-4159.2004.02712.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2004.02712.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceArai A., Kessler M., Ambros-Ingerson J., Quan A., Yigiter E., Rogers G. and Lynch G. ( 1996a ) Effects of a centrally active benzoylpyrrolidine drug on AMPA receptor kinetics. Neuroscience 75, 573 – 585.en_US
dc.identifier.citedreferenceArai A., Kessler M., Rogers G. and Lynch G. ( 1996b ) Effects of a memory-enhancing drug on dl-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor currents and synaptic transmission in hippocampus. J. Pharmacol. Exp. Ther. 278, 627 – 638.en_US
dc.identifier.citedreferenceBadiani A., Anagnostaras S. G. and Robinson T. E. ( 1995a ) The development of sensitization to the psychomotor stimulant effects of amphetamine is enhanced in a novel environment. Psychopharmacology (Berl. ) 117, 443 – 452.en_US
dc.identifier.citedreferenceBadiani A., Browman K. E. and Robinson T. E. ( 1995b ) Influence of novel versus home environments on sensitization to the psychomotor stimulant effects of cocaine and amphetamine. Brain Res. 674, 291 – 298.en_US
dc.identifier.citedreferenceBadiani A., Oates M. M., Day H. E., Watson S. J., Akil H. and Robinson T. E. ( 1998 ) Amphetamine-induced behavior, dopamine release, and c -fos mRNA expression: modulation by environmental novelty. J. Neurosci. 18, 10579 – 10593.en_US
dc.identifier.citedreferenceBadiani A., Oates M. M., Day H. E., Watson S. J., Akil H. and Robinson T. E. ( 1999 ) Environmental modulation of amphetamine-induced c- fos expression in D1 versus D2 striatal neurons. Behav. Brain Res. 103, 203 – 209.en_US
dc.identifier.citedreferenceBeneyto M. and Meador-Woodruff J. H. ( 2004 ) Expression of transcripts encoding AMPA receptor subunits and associated postsynaptic proteins in the macaque brain. J. Comp. Neurol. 468, 530 – 554.en_US
dc.identifier.citedreferenceBerke J. D., Paletzki R. F., Aronson G. J., Hyman S. E. and Gerfen C. R. ( 1998 ) A complex program of striatal gene expression induced by dopaminergic stimulation. J. Neurosci. 18, 5301 – 5310.en_US
dc.identifier.citedreferenceBerretta S., Robertson H. A. and Graybiel A. M. ( 1992 ) Dopamine and glutamate agonists stimulate neuron-specific expression of Fos-like protein in the striatum. J. Neurophysiol. 68, 767 – 777.en_US
dc.identifier.citedreferenceBerretta S., Parthasarathy H. B. and Graybiel A. M. ( 1997 ) Local release of GABAergic inhibition in the motor cortex induces immediate-early gene expression in indirect pathway neurons of the striatum. J. Neurosci. 17, 4752 – 4763.en_US
dc.identifier.citedreferenceBerretta S., Sachs Z. and Graybiel A. M. ( 1999 ) Cortically driven Fos induction in the striatum is amplified by local dopamine D2-class receptor blockade. Eur J. Neurosci. 11, 4309 – 4319.en_US
dc.identifier.citedreferenceBrown T. H., Chapman P. F., Kairiss E. W. and Keenan C. L. ( 1988 ) Long-term synaptic potentiation. Science 242, 724 – 728.en_US
dc.identifier.citedreferenceBuller A. L., Larson H. C., Schneider B. E., Beaton J. A., Morrisett R. A. and Monaghan D. T. ( 1994 ) The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition. J. Neurosci. 14, 5471 – 5484.en_US
dc.identifier.citedreferenceCador M., Bjijou Y., Cailhol S. and Stinus L. ( 1999 ) d-Amphetamine-induced behavioral sensitization: implication of a glutamatergic medial prefrontal cortex–ventral tegmental area innervation. Neuroscience 94, 705 – 721.en_US
dc.identifier.citedreferenceCenci M. A. and Bjorklund A. ( 1993 ) Transection of corticostriatal afferents reduces amphetamine- and apomorphine-induced striatal Fos expression and turning behaviour in unilaterally 6-hydroxydopamine-lesioned rats. Eur. J. Neurosci. 5, 1062 – 1070.en_US
dc.identifier.citedreferenceCenci M. A. and Bjorklund A. ( 1994 ) Transection of corticostriatal afferents abolishes the hyperexpression of Fos and counteracts the development of rotational overcompensation induced by intrastriatal dopamine-rich grafts when challenged with amphetamine. Brain Res. 665, 167 – 174.en_US
dc.identifier.citedreferenceCenci M. A., Kalen P., Mandel R. J., Wictorin K. and Bjorklund A. ( 1992 ) Dopaminergic transplants normalize amphetamine- and apomorphine-induced Fos expression in the 6-hydroxydopamine-lesioned striatum. Neuroscience 46, 943 – 957.en_US
dc.identifier.citedreferenceChiasson B. J., Hong M. G. and Robertson H. A. ( 1997 ) Putative roles for the inducible transcription factor c-fos in the central nervous system: studies with antisense oligonucleotides. Neurochem. Int. 31, 459 – 475.en_US
dc.identifier.citedreferenceCole D. G., Kobierski L. A., Konradi C. and Hyman S. E. ( 1994 ) 6-Hydroxydopamine lesions of rat substantia nigra up-regulate dopamine-induced phosphorylation of the cAMP-response element-binding protein in striatal neurons. Proc. Natl Acad. Sci. USA 91, 9631 – 9635.en_US
dc.identifier.citedreferenceCrombag H. S., Badiani A. and Robinson T. E. ( 1996 ) Signalled versus unsignalled intravenous amphetamine: large differences in the acute psychomotor response and sensitization. Brain Res. 722, 227 – 231.en_US
dc.identifier.citedreferenceCurran E. J. and Watson S. J. Jr ( 1995 ) Dopamine receptor mRNA expression patterns by opioid peptide cells in the nucleus accumbens of the rat: a double in situ hybridization study. J. Comp. Neurol. 361, 57 – 76.en_US
dc.identifier.citedreferenceDragunow M., Logan B. and Laverty R. ( 1991 ) 3,4-Methylenedioxymethamphetamine induces Fos-like proteins in rat basal ganglia: reversal with MK 801. Eur. J. Pharmacol. 206, 255 – 258.en_US
dc.identifier.citedreferenceEnglish J. D. and Sweatt J. D. ( 1996 ) Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 271, 24329 – 24332.en_US
dc.identifier.citedreferenceEnglish J. D. and Sweatt J. D. ( 1997 ) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem. 272, 19103 – 19106.en_US
dc.identifier.citedreferenceFerguson S. M., Norton C. S., Watson S. J., Akil H. and Robinson T. E. ( 2003 ) Amphetamine-evoked c- fos mRNA expression in the caudate–putamen: the effects of DA and NMDA receptor antagonists vary as a function of neuronal phenotype and environmental context. J. Neurochem. 86, 33 – 44.en_US
dc.identifier.citedreferenceFiore R. S., Murphy T. H., Sanghera J. S., Pelech S. L. and Baraban J. M. ( 1993 ) Activation of p42 mitogen-activated protein kinase by glutamate receptor stimulation in rat primary cortical cultures. J. Neurochem. 61, 1626 – 1633.en_US
dc.identifier.citedreferenceGerfen C. R. ( 1992 ) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 15, 133 – 139.en_US
dc.identifier.citedreferenceGerfen C. R., Miyachi S., Paletzki R. and Brown P. ( 2002 ) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J. Neurosci. 22, 5042 – 5054.en_US
dc.identifier.citedreferenceGirault J. A., Barbeito L., Spampinato U., Gozlan H., Glowinski J. and Besson M. J. ( 1986 ) In vivo release of endogenous amino acids from the rat striatum: further evidence for a role of glutamate and aspartate in corticostriatal neurotransmission. J. Neurochem. 47, 98 – 106.en_US
dc.identifier.citedreferenceGlowinski J., Cheramy A., Romo R. and Barbeito L. ( 1988 ) Presynaptic regulation of dopaminergic transmission in the striatum. Cell. Mol. Neurobiol. 8, 7 – 17.en_US
dc.identifier.citedreferenceGoldin M. and Segal M. ( 2003 ) Protein kinase C and ERK involvement in dendritic spine plasticity in cultured rodent hippocampal neurons. Eur. J. Neurosci. 17, 2529 – 2539.en_US
dc.identifier.citedreferenceGraybiel A. M., Moratalla R. and Robertson H. A. ( 1990 ) Amphetamine and cocaine induce drug-specific activation of the c- fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc. Natl Acad. Sci. USA 87, 6912 – 6916.en_US
dc.identifier.citedreferenceHarlan R. E. and Garcia M. M. ( 1998 ) Drugs of abuse and immediate-early genes in the forebrain. Mol. Neurobiol. 16, 221 – 267.en_US
dc.identifier.citedreferenceHess U.S., Whalen S. P., Sandoval L. M., Lynch G. and Gall C. M. ( 2003 ) Ampakines reduce methamphetamine-driven rotation and activate neocortex in a regionally selective fashion. Neuroscience 121, 509 – 521.en_US
dc.identifier.citedreferenceHyman S. E. and Malenka R. C. ( 2001 ) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695 – 703.en_US
dc.identifier.citedreferenceJaber M., Cador M., Dumartin B., Normand E., Stinus L. and Bloch B. ( 1995 ) Acute and chronic amphetamine treatments differently regulate neuropeptide messenger RNA levels and Fos immunoreactivity in rat striatal neurons. Neuroscience 65, 1041 – 1050.en_US
dc.identifier.citedreferenceJohansson B., Lindstrom K. and Fredholm B. B. ( 1994 ) Differences in the regional and cellular localization of c- fos messenger RNA induced by amphetamine, cocaine and caffeine in the rat. Neuroscience 59, 837 – 849.en_US
dc.identifier.citedreferenceKayadjanian N., Heavens R. P., Besson M. J. and Sirinathsinghji D. J. ( 1996 ) Striatal NMDAR2B mRNA expression after bilateral cortical and unilateral nigral deafferentation. Neuroreport 7, 713 – 716.en_US
dc.identifier.citedreferenceKonradi C., Cole R. L., Heckers S. and Hyman S. E. ( 1994 ) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J. Neurosci. 14, 5623 – 5634.en_US
dc.identifier.citedreferenceKonradi C., Leveque J. C. and Hyman S. E. ( 1996 ) Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J. Neurosci. 16, 4231 – 4239.en_US
dc.identifier.citedreferenceLaHoste G. J., Henry B. L. and Marshall J. F. ( 2000 ) Dopamine D1 receptors synergize with D2, but not D3 or D4, receptors in the striatum without the involvement of action potentials. J. Neurosci. 20, 6666 – 6671.en_US
dc.identifier.citedreferenceLandwehrmeyer G. B., Standaert D. G., Testa C. M., Penney J. B. Jr and Young A. B. ( 1995 ) NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum. J. Neurosci. 15, 5297 – 5307.en_US
dc.identifier.citedreferenceLaurie D. J. and Seeburg P. H. ( 1994 ) Ligand affinities at recombinant N -methyl-d-aspartate receptors depend on subunit composition. Eur. J. Pharmacol. 268, 335 – 345.en_US
dc.identifier.citedreferenceLi Y. and Wolf M. E. ( 1997 ) Ibotenic acid lesions of prefrontal cortex do not prevent expression of behavioral sensitization to amphetamine. Behav. Brain Res. 84, 285 – 289.en_US
dc.identifier.citedreferenceLi Y., Kolb B. and Robinson T. E. ( 2003 ) The location of persistent amphetamine-induced changes in the density of dendritic spines on medium spiny neurons in the nucleus accumbens and caudate-putamen. Neuropsychopharmacology 28, 1082 – 1085.en_US
dc.identifier.citedreferenceListe I., Rozas G., Guerra M. J. and Labandeira-Garcia J. L. ( 1995 ) Cortical stimulation induces Fos expression in striatal neurons via NMDA glutamate and dopamine receptors. Brain Res. 700, 1 – 12.en_US
dc.identifier.citedreferenceMartin L. J., Blackstone C. D., Levey A. I., Huganir R. L. and Price D. L. ( 1993 ) AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience 53, 327 – 358.en_US
dc.identifier.citedreferenceMazzucchelli C., Vantaggiato C., Ciamei A. et al. ( 2002 ) Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34, 807 – 820.en_US
dc.identifier.citedreferenceMcGeorge A. J. and Faull R. L. ( 1989 ) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29, 503 – 537.en_US
dc.identifier.citedreferenceNestler E. J. ( 2001 ) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119 – 128.en_US
dc.identifier.citedreferenceNestler E. J., Hope B. T. and Widnell K. L. ( 1993 ) Drug addiction: a model for the molecular basis of neural plasticity. Neuron 11, 995 – 1006.en_US
dc.identifier.citedreferenceNieoullon A., Cheramy A. and Glowinski J. ( 1978 ) Release of dopamine evoked by electrical stimulation of the motor and visual areas of the cerebral cortex in both caudate nuclei and in the substantia nigra in the cat. Brain Res. 145, 69 – 83.en_US
dc.identifier.citedreferenceOstrander M. M., Badiani A., Day H. E., Norton C. S., Watson S. J., Akil H. and Robinson T. E. ( 2003 ) Environmental context and drug history modulate amphetamine-induced c- fos mRNA expression in the basal ganglia, central extended amygdala, and associated limbic forebrain. Neuroscience 120, 551 – 571.en_US
dc.identifier.citedreferenceParthasarathy H. B. and Graybiel A. M. ( 1997 ) Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the squirrel monkey. J. Neurosci. 17, 2477 – 2491.en_US
dc.identifier.citedreferencePaxinos G. and Watson C. ( 1998 ) The Rat Brain in Stereotaxic Coordinates ( 4th edn ). Academic, San Diego.en_US
dc.identifier.citedreferenceQuinlan E. M., Philpot B. D., Huganir R. L. and Bear M. F. ( 1999 ) Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat. Neurosci. 2, 352 – 357.en_US
dc.identifier.citedreferenceRobinson T. E. and Kolb B. ( 1997 ) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci. 17, 8491 – 8497.en_US
dc.identifier.citedreferenceRobinson T. E. and Kolb B. ( 1999 ) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 1598 – 1604.en_US
dc.identifier.citedreferenceRuskin D. N. and Marshall J. F. ( 1994 ) Amphetamine- and cocaine-induced fos in the rat striatum depends on D2 dopamine receptor activation. Synapse 18, 233 – 240.en_US
dc.identifier.citedreferenceSalzmann J., Marie-Claire C., Le Guen S., Roques B. P. and Noble F. ( 2003 ) Importance of ERK activation in behavioral and biochemical effects induced by MDMA in mice. Br. J. Pharmacol. 140, 831 – 838.en_US
dc.identifier.citedreferenceSgambato V., Abo V., Rogard M., Besson M. J. and Deniau J. M. ( 1997 ) Effect of electrical stimulation of the cerebral cortex on the expression of the Fos protein in the basal ganglia. Neuroscience 81, 93 – 112.en_US
dc.identifier.citedreferenceSgambato V., Pages C., Rogard M., Besson M. J. and Caboche J. ( 1998 ) Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J. Neurosci. 18, 8814 – 8825.en_US
dc.identifier.citedreferenceSnyder-Keller A. M. ( 1991 ) Striatal c- fos induction by drugs and stress in neonatally dopamine-depleted rats given nigral transplants: importance of NMDA activation and relevance to sensitization phenomena. Exp. Neurol. 113, 155 – 165.en_US
dc.identifier.citedreferenceSommer W. and Fuxe K. ( 1997 ) On the role of c- fos expression in striatal transmission. The antisense oligonucleotide approach. Neurochem. Int. 31, 425 – 436.en_US
dc.identifier.citedreferenceSpencer H. J. ( 1976 ) Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl ester: evidence for glutamic acid as an excitatory transmitter in the rat striatum. Brain Res. 102, 91 – 101.en_US
dc.identifier.citedreferenceStandaert D. G., Testa C. M., Young A. B. and Penney J. B. Jr ( 1994 ) Organization of N -methyl-d-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J. Comp. Neurol. 343, 1 – 16.en_US
dc.identifier.citedreferenceStandaert D. G., Friberg I. K., Landwehrmeyer G. B., Young A. B. and Penney J. B. Jr ( 1999 ) Expression of NMDA glutamate receptor subunit mRNAs in neurochemically identified projection and interneurons in the striatum of the rat. Brain Res. Mol. Brain Res. 64, 11 – 23.en_US
dc.identifier.citedreferenceTang Y. P., Shimizu E., Dube G. R., Rampon C., Kerchner G. A., Zhuo M., Liu G. and Tsien J. Z. ( 1999 ) Genetic enhancement of learning and memory in mice. Nature 401, 63 – 69.en_US
dc.identifier.citedreferenceThomas M. J., Malenka R. C. and Bonci A. ( 2000 ) Modulation of long-term depression by dopamine in the mesolimbic system. J. Neurosci. 20, 5581 – 5586.en_US
dc.identifier.citedreferenceThomas M. J., Beurrier C., Bonci A. and Malenka R. C. ( 2001 ) Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat. Neurosci. 4, 1217 – 1223.en_US
dc.identifier.citedreferenceUslaner J., Badiani A., Day H. E., Watson S. J., Akil H. and Robinson T. E. ( 2001a ) Environmental context modulates the ability of cocaine and amphetamine to induce c- fos mRNA expression in the neocortex, caudate nucleus, and nucleus accumbens. Brain Res. 920, 106 – 116.en_US
dc.identifier.citedreferenceUslaner J., Badiani A., Norton C. S., Day H. E., Watson S. J., Akil H. and Robinson T. E. ( 2001b ) Amphetamine and cocaine induce different patterns of c- fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur. J. Neurosci. 13, 1977 – 1983.en_US
dc.identifier.citedreferenceUslaner J. M., Crombag H. S., Ferguson S. M. and Robinson T. E. ( 2003a ) Cocaine-induced psychomotor activity is associated with its ability to induce c- fos mRNA expression in the subthalamic nucleus: effects of dose and repeated treatment. Eur. J. Neurosci. 17, 2180 – 2186.en_US
dc.identifier.citedreferenceUslaner J. M., Norton C. S., Watson S. J., Akil H. and Robinson T. E. ( 2003b ) Amphetamine-induced c- fos mRNA expression in the caudate–putamen and subthalamic nucleus: interactions between dose, environment, and neuronal phenotype. J. Neurochem. 85, 105 – 114.en_US
dc.identifier.citedreferenceValjent E., Corvol J. C., Pages C., Besson M. J., Maldonado R. and Caboche J. ( 2000 ) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J. Neurosci. 20, 8701 – 8709.en_US
dc.identifier.citedreferenceVanhoutte P., Barnier J. V., Guibert B., Pages C., Besson M. J., Hipskind R. A. and Caboche J. ( 1999 ) Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol. Cell. Biol. 19, 136 – 146.en_US
dc.identifier.citedreferenceVargo J. M. and Marshall J. F. ( 1995 ) Time-dependent changes in dopamine agonist-induced striatal Fos immunoreactivity are related to sensory neglect and its recovery after unilateral prefrontal cortex injury. Synapse 20, 305 – 315.en_US
dc.identifier.citedreferenceVargo J. M. and Marshall J. F. ( 1996 ) Frontal cortex ablation reversibly decreases striatal zif/268 and junB expression: temporal correspondence with sensory neglect and its spontaneous recovery. Synapse 22, 291 – 303.en_US
dc.identifier.citedreferenceVicini S., Wang J. F., Li J. H., Zhu W. J., Wang Y. H., Luo J. H., Wolfe B. B. and Grayson D. R. ( 1998 ) Functional and pharmacological differences between recombinant N -methyl-d-aspartate receptors. J. Neurophysiol. 79, 555 – 566.en_US
dc.identifier.citedreferenceWang J. Q., Daunais J. B. and McGinty J. F. ( 1994 ) NMDA receptors mediate amphetamine-induced upregulation of zif/268 and preprodynorphin mRNA expression in rat striatum. Synapse 18, 343 – 353.en_US
dc.identifier.citedreferenceWilluhn I., Sun W. and Steiner H. ( 2003 ) Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context. Eur. J. Neurosci. 17, 1053 – 1066.en_US
dc.identifier.citedreferenceWolf M. E., Dahlin S. L., Hu X. T., Xue C. J. and White K. ( 1995 ) Effects of lesions of prefrontal cortex, amygdala, or fornix on behavioral sensitization to amphetamine: comparison with N -methyl-d-aspartate antagonists. Neuroscience 69, 417 – 439.en_US
dc.identifier.citedreferenceWu G. Y., Deisseroth K. and Tsien R. W. ( 2001 ) Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat. Neurosci. 4, 151 – 158.en_US
dc.identifier.citedreferenceWullner U., Standaert D. G., Testa C. M., Landwehrmeyer G. B., Catania M. V., Penney J. B. Jr and Young A. B. ( 1994 ) Glutamate receptor expression in rat striatum: effect of deafferentation. Brain Res. 647, 209 – 219.en_US
dc.identifier.citedreferenceXia Z., Dudek H., Miranti C. K. and Greenberg M. E. ( 1996 ) Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425 – 5436.en_US
dc.identifier.citedreferenceZukin R. S. and Bennett M. V. ( 1995 ) Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci. 18, 306 – 313.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.