Show simple item record

ATP-Dependent Glutamate Uptake into Synaptic Vesicles from Cerebellar Mutant Mice

dc.contributor.authorFischer-Bovenkerk, Carolynen_US
dc.contributor.authorKish, Phillip E.en_US
dc.contributor.authorUeda, Tetsufumien_US
dc.date.accessioned2010-04-01T15:57:01Z
dc.date.available2010-04-01T15:57:01Z
dc.date.issued1988-10en_US
dc.identifier.citationFischer-Bovenkerk, Carolyn; Kish, Phillip E.; Ueda, Tetsufumi (1988). "ATP-Dependent Glutamate Uptake into Synaptic Vesicles from Cerebellar Mutant Mice." Journal of Neurochemistry 51(4): 1054-1059. <http://hdl.handle.net/2027.42/66449>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66449
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=2901460&dopt=citationen_US
dc.description.abstractThe ATP-dependent glutamate uptake system in synaptic vesicles prepared from mouse cerebellum was characterized, and the levels of glutamate uptake were investigated in the cerebellar mutant mice, staggerer and weaver, whose main defect is the loss of cerebellar granule cells, and the nervous mutant, whose main defect is the loss of Purkinje cells. The ATP-dependent glutamate uptake is stimulated by low concentrations of chloride, is insensitive to aspartate, and is inhibited by agents known to dissipate the electrochemical proton gradient. These properties are similar to those of the glutamate uptake system observed in the highly purified synaptic vesicles prepared from bovine cortex. The ATP-dependent glutamate uptake system is reduced by 68% in the staggerer and 57–67% in the weaver mutant; these reductions parallel the substantial loss of granule cells in those mutants. In contrast, the cerebellar levels of glutamate uptake are not altered significantly in the nervous mutant, which has lost Purkinje cells, but not granule cells. In view of evidence that granule cells are glutamatergic neurons and Purkinje cells are GABAergic neurons, these observations support the notion that the ATP-dependent glutamate uptake system is present in synaptic vesicles of glutamatergic neurons.en_US
dc.format.extent587376 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1988 International Society for Neurochemistry Ltd.en_US
dc.subject.otherGlutamateen_US
dc.subject.otherSynaptic Vesicleen_US
dc.subject.otherStaggereren_US
dc.subject.otherWeaveren_US
dc.subject.otherNervousen_US
dc.subject.otherGranule Cellen_US
dc.titleATP-Dependent Glutamate Uptake into Synaptic Vesicles from Cerebellar Mutant Miceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Pharmacology and Psychiatry, The University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationotherMental Health Research Institute .en_US
dc.identifier.pmid2901460en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66449/1/j.1471-4159.1988.tb03068.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1988.tb03068.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceBalcar V. J. and Johnston G. A. R. ( 1972 ) The structural specificity of the high affinity uptake of l-glutamate and l-aspartate by rat brain slices. J. Neurochem. 19, 2656 – 2666.en_US
dc.identifier.citedreferenceBloom F. E., Ueda T., Battenberg E., and Greengard P. ( 1979 ) Im-munocytochemical localization, in synapses, of protein I, an endogenous substrate for protein kinases in mammalian brain. Proc. Natl. Acad. Sci. USA 76, 5982 – 5986.en_US
dc.identifier.citedreferenceBosley T. M., Woodhams P. L., Gordon R. D., and Balazs R. ( 1983 ) Effects of anoxia on the stimulated release of amino acid neu-rotransmitters in the cerebellum in vitro. J. Neurochem. 40, 189 – 201.en_US
dc.identifier.citedreferenceCampbell G. L. and Shank R. P. ( 1978 ) Glutamate and GABA uptake by cerebellar granule and glial cell enriched populations. Brain Res. 153, 618 – 622.en_US
dc.identifier.citedreferenceCotman C. W. and Iversen L. L. ( 1987 ) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci. 10, 263 – 265.en_US
dc.identifier.citedreferenceCotman C. W., Foster A. C., and Lanthorn T. H. ( 1981 ) An overview of glutamate as a neurotransmitter, in Glutamate as a Neuro-transmitter ( Di Chiara, G. Gessa, G. L., eds ), pp. 1 – 27. Raven Press, New York.en_US
dc.identifier.citedreferenceCotman C. W., Monaghan D. T., Ottersen O. P., and Storm-Mathisen J. ( 1987 ) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci. 10, 273 – 279.en_US
dc.identifier.citedreferenceCrunelli V., Forda S., and Kelly J. S. ( 1984 ) The reversal potential of excitatory amino acid action on granule cells of the rat dentate gyrus. J. Physiol. 351, 327 – 342.en_US
dc.identifier.citedreferenceCurtis D. R., Duggan A. W., Felix D., Johnston G. A. R., and McLennan H. ( 1971 ) Antagonism between bicuculline and GABA in the cat brain. Brain Res. 33, 57 – 73.en_US
dc.identifier.citedreferenceDeCamilli P., Harris, S. M., JR. Huttner, W. B., and Greengard P. ( 1983 ) Synapsin (protein I), a nerve terminal-specific phospho-protein: II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J. Cell Biol. 96, 1355 – 1373.en_US
dc.identifier.citedreferenceDolphin A. C. and Greengard P. ( 1981 ) Presence of protein I, a phos-phoprotein associated with synaptic vesicles, in cerebellar granule cells. J. Neurochem. 36, 1627 – 1631.en_US
dc.identifier.citedreferenceFagg G. E. ( 1985 ) l-Glutamate, excitatory amino acid receptors and brain function. Trends Neurosci. 8, 207 – 210.en_US
dc.identifier.citedreferenceFischer-Bovenkerk C., Kish P. E., and Ueda T. ( 1986 ) Vesicular glutamate uptake in cerebellar mutant mice. Soc. Neurosci Abstr 12, 382.en_US
dc.identifier.citedreferenceFlint R. S., Rea M. A., and McBride W. J. ( 1981 ) In vitro release of endogenous amino acids from granule cell-, stellate cell-, and climbing fiber-deficient cerebella. J. Neurochem. 37, 1425 – 1430.en_US
dc.identifier.citedreferenceFonnum F. ( 1984 ) Glutamate: a neurotransmitter in mammalian brain. J. Neurochem. 42, 1 – 11.en_US
dc.identifier.citedreferenceFoster A. C. and Roberts P. J. ( 1980 ) Endogenous amino acid release from rat cerebellum in vitro. J. Neurochem. 35, 517 – 519.en_US
dc.identifier.citedreferenceGordon R. D. and Balazs R. ( 1983 ) Characterization of separated cell types from the developing rat cerebellum: transport of glutamate and aspartate by preparations enriched in Purkinje cells, granule neurones, and astrocytes. J. Neurochem. 40, 1090 – 1099.en_US
dc.identifier.citedreferenceHackett J. T., Hou S.-M., and Cochran S. L. ( 1979 ) Glutamate and synaptic depolarization of Purkinje cells evoked by parallel fibers and by climbing fibers. Brain Res. 170, 377 – 380.en_US
dc.identifier.citedreferenceHolz R. W. ( 1978 ) Evidence that catecholamine transport into chro-maffin vesicles is coupled to vesicle membrane potential. Proc. Natl. Acad. Sci. USA 75, 5190 – 5194.en_US
dc.identifier.citedreferenceJohnson R. G., Pfister D., Carty S. E., and Scarpa A. ( 1979 ) Biological amine transport in chromaffin ghosts, coupling to the trans-membrane proton and potential gradients. J. Biol. Chem. 254, 10963 – 10972.en_US
dc.identifier.citedreferenceKish P. E. and Ueda T. ( 1989 ) Glutamate accumulation into synaptic vesicles, in Methods in Enzymology, Biomembranes, Pan M: Biological Transport. Vol. 4 ( Fleischer, S. Fleischer, B., eds ). Academic Press, New York ( in press ).en_US
dc.identifier.citedreferenceKuhar M. J. and Snyder S. H. ( 1970 ) The subcellular distribution of free 3 H-glutamic acid in rat cerebral cortical slices. J. Pharmacol. Exp. Ther. 171, 141 – 152.en_US
dc.identifier.citedreferenceLevi G., Gordon R. D., Gallo V., Wilkin G. P., and Balazs R. ( 1982 ) Putative acidic amino acid transmitters in the cerebellum. I. Depolarization induced release. Brain Res. 239, 425 – 445.en_US
dc.identifier.citedreferenceLogan W. J. and Snyder S. H. ( 1972 ) High affinity uptake systems for glycine, glutamic acid and aspartic acid in synaptosomes of rat central nervous tissues. Brain Res. 42, 413 – 431.en_US
dc.identifier.citedreferenceLowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. ( 1951 ) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 – 275.en_US
dc.identifier.citedreferenceMcBride W. J., Aprison M. H., and Kusano K. ( 1976a ) Contents of several amino acids in the cerebellum, brainstem and cerebrum of the “staggerer, “weaver” and nervous” neurologically mutant mice. J. Neurochem. 26, 867 – 870.en_US
dc.identifier.citedreferenceMcBride, W. J. Nadi, N. S. Altman, J. Aprison, M. H., ( 1976b ) Effect of selective doses of x-irradiation on the levels of several amino acids in the cerebellum of the rat. Neurochem. Res. 1, 141 – 152.en_US
dc.identifier.citedreferenceMesser A. ( 1980 ) Cerebellar granule cells in normal and neurological mutants of mice, in Advances in Cellular Neurobiology, Vol. 1 ( Fedoroff, S. Hertz, L., eds ), pp. 179 – 207. Academic Press, New York.en_US
dc.identifier.citedreferenceNaito S. and Ueda T. ( 1983 ) Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles. J. Biol. Chem. 258, 696 – 699.en_US
dc.identifier.citedreferenceNaito S. and Ueda T. ( 1985 ) Characterization of glutamate uptake into synaptic vesicles. J. Neurochem. 44, 99 – 109.en_US
dc.identifier.citedreferenceNicholls D. G. and Sihra T. S. ( 1986 ) Synaptosomes possess an ex-ocytotic pool of glutamate. Nature 321, 772 – 773.en_US
dc.identifier.citedreferenceNjus D., Kelley P. M., and Harnadek G. J. ( 1986 ) Bioenergetics of secretory vesicles. Biochim. Biophys. Acta 853, 237 – 265.en_US
dc.identifier.citedreferenceObata K., Ito M., Ochi R., and Sato N. ( 1967 ) Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of Γ-aminobutyric acid on Deiter′s neurones. Exp. Brain Res. 4, 43 – 57.en_US
dc.identifier.citedreferenceRhode B. H., Rea M. A., Simon J. R., and McBride W. J. ( 1979 ) Effects of x-irradiation-induced loss of cerebellar granule cells on the synaptosomal levels and the high affinity uptake of amino acids. J. Neurochem. 32, 1431 – 1435.en_US
dc.identifier.citedreferenceRoffler-Tarlov S. and Sidman R. L. ( 1978 ) Concentration of glutamic acid in cerebellar cortex and deep nuclei of normal mice and weaver, staggerer and nervous mutants. Brain Res. 142, 269 – 283.en_US
dc.identifier.citedreferenceSandoval M. E. and Cotman C. W. ( 1978 ) Evaluation of glutamate as a transmitter of the cerebellar parallel fibres. Neuroscience 3, 199 – 206.en_US
dc.identifier.citedreferenceSidman R. L. and Green M. C. ( 1970 ) “Nervous,” a new mutant mouse with cerebellar disease, in Les mutants pathologiques chez I′animal ( Sabourdy M, ed ), pp. 69 – 79. Editions du C. N. R. S., Paris.en_US
dc.identifier.citedreferenceSidman R. L., Lane P. W., and Dickie M. M. ( 1962 ) Staggerer, a new mutation in the mouse affecting the cerebellum. Science 137, 151 – 155.en_US
dc.identifier.citedreferenceSidman R. L., Green M. C., and Appel S. H. ( 1965 ) Catalog of the Neurological Mutants of the Mouse. Harvard University Press, Cambridge, Massachusetts.en_US
dc.identifier.citedreferenceStorm-Mathisen J., Leknes A. K., Bore A. T., Vaaland J. L., Edminson P., Haug F.-M. S., and Ottersen O. P. ( 1983 ) First visualization of glutamate and GABA in neurons by immunocytochemistry. Nature 301, 517 – 520.en_US
dc.identifier.citedreferenceUeda T. ( 1986 ) Glutamate transport in the synaptic vesicle, in Excitatory Amino Acids ( Roberts, P. J. Storm-Mathisen, J. Bradford, H. F., eds ), pp. 173 – 195. Macmillan Press, London.en_US
dc.identifier.citedreferenceUeda T., Greengard P., Berzins K., Cohen R. S., Blomberg F., Grab D. J., and Siekevitz P. ( 1979 ) Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent protein kinase. J. Cell Biol. 83, 308 – 319.en_US
dc.identifier.citedreferenceValcana T., Hudson D., and Timiras P. S. ( 1972 ) Effects of the x-irradiation on the content of amino acids in the developing rat cerebellum. J. Neurochem. 19, 2229 – 2232.en_US
dc.identifier.citedreferenceWatkins J. C. and Evans R. H. ( 1981 ) Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 21, 165 – 204.en_US
dc.identifier.citedreferenceYoung A. B., Oster-Granite M. L., Herndon R. M., and Snyder S. H. ( 1974 ) Glutamic acid: selective depletion by viral-induced granule cell loss in hamster cerebellum. Brain Res. 73, 1 – 13.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.