Show simple item record

Opioid Signal Transduction in Intact and Fragmented SH-SY5Y Neural Cells

dc.contributor.authorCarter, Bruce D.en_US
dc.contributor.authorMedzihradsky, Fedoren_US
dc.date.accessioned2010-04-01T15:57:04Z
dc.date.available2010-04-01T15:57:04Z
dc.date.issued1992-05en_US
dc.identifier.citationCarter, Bruce D.; Medzihradsky, Fedor (1992). "Opioid Signal Transduction in Intact and Fragmented SH-SY5Y Neural Cells." Journal of Neurochemistry 58(5): 1611-1619. <http://hdl.handle.net/2027.42/66450>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66450
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=1560222&dopt=citationen_US
dc.description.abstractParameters of ligand binding, stimulation of low- K m GTPase, and inhibition of adenylate cyclase were determined in intact human neuroblastoma SH-SY5Y cells and in their isolated membranes, both suspended in identical physiological buffer medium. In cells, the Μ-selective opioid agonist [ 3 H]Tyr-D-Ala-Gly(Me)Phe-Gly-ol ([ 3 H]DAMGO) bound to two populations of sites with K D values of 3.9 and 160 n M , with <10% of the sites in the high-affinity state. Both sites were also detected at 4°C and were displaced by various opioids, including quaternary naltrexone. The opioid antagonist [ 3 H]naltrexone bound to a single population of sites, and in cells treated with pertussis toxin the biphasic displacement of [ 3 H]naltrexone by DAMGO became monophasic with only low-affinity binding present. The toxin specifically reduced high-affinity agonist binding but had no effect on the binding of [ 3 H]naltrexone. In isolated membranes, both agonist and antagonist bound to a single population of receptor sites with affinities similar to that of the high-affinity binding component in cells. Addition of GTP to membranes reduced the B max for [ 3 H]DAMGO by 87% and induced a linear ligand binding component; a low-affinity binding site, however, could not be saturated. Compared with results obtained with membranes suspended in Tris buffer, agonist binding, including both receptor density and affinity, in the physiological medium was attenuated. The results suggest that high-affinity opioid agonist binding represents the ligand-receptor-guanine nucleotide binding protein (G protein) complex present in cells at low density due to modulation by endogenous GTP. Opioid receptor coupling to adenylate cyclase in intact and fragmented cells occurred with similar efficiency: DAMGO inhibited adenylate cyclase with K i , values of 11 n M in cells and 26 n M in lysates, with 30% maximal inhibition in both preparations. Receptor coupling to G protein in membranes occurred with similar parameters: DAMGO stimulated low- K m GTPase with a K s of 31 n M and an S max of 48%. Both effector responses were blocked by naloxone and were strongly impaired by rigorous cell homogenization. These results indicate that opioid signal transduction in intact SH-SY5Y cells and their appropriately isolated membranes functions with similar efficiencies involving a large reserve of uncoupled receptors.en_US
dc.format.extent956942 bytes
dc.format.extent3110 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1992 International Society for Neurochemistryen_US
dc.subject.otherΜ-Opioid Receptoren_US
dc.subject.otherG Proteinen_US
dc.subject.otherAdenylate Cyclaseen_US
dc.subject.otherGTPaseen_US
dc.subject.otherSH-SY5Y Cellsen_US
dc.titleOpioid Signal Transduction in Intact and Fragmented SH-SY5Y Neural Cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Biological Chemistry and Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan, U.S.A.en_US
dc.identifier.pmid1560222en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66450/1/j.1471-4159.1992.tb10032.x.pdf
dc.identifier.doi10.1111/j.1471-4159.1992.tb10032.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceAronstam R. S. and Narayanan T. K. ( 1988 ) Temperature effect on the detection of muscarinic receptor-G protein interactions in ligand binding assays. Biochem. Pharmacol. 37, 1045 – 1049.en_US
dc.identifier.citedreferenceBarchfeld C. C. and Medzihradsky F. ( 1984 ) Receptor-mediated stimulation of brain GTPase by opiates in normal and dependent rats. Biochem. Biophys. Res. Commun. 121, 641 – 648.en_US
dc.identifier.citedreferenceBarchfeld-Rothschild C. C. and Medzihradsky F. ( 1985 ) Heterogeneity of opioid receptor binding in brain slices. J. Neurosci. Res. 18, 358 – 365.en_US
dc.identifier.citedreferenceBlanchard S. G., Chang K.-J., and Cuatrecasas P. ( 1983 ) Characterization of the association of tritiated enkephalin with neuroblastoma cells under conditions optimal for receptor down regulation, J. Biol. Chem. 258, 1092 – 1097.en_US
dc.identifier.citedreferenceBlume A. J., Lichtshtein D., and Boone G. ( 1979 ) Coupling of opiate receptors to adenylate cyclase: requirement for Na + and GTP. Proc. Natl. Acad. Sci. USA 76, 5626 – 5630.en_US
dc.identifier.citedreferenceBurns D. L., Hewelett E., Moss J., and Vaughan M. ( 1983 ) Pertussis toxin inhibits enkephalin stimulation of GTPase in NG108–15 cells. J. Biol. Chem. 258, 1435 – 1438.en_US
dc.identifier.citedreferenceCarroll J. A., Shaw J. S., and Wickenden A. D. ( 1988 ) The physiological relevance of low agonist affinity binding at Μ-receptors. Br. J. Pharmacol. 94, 625 – 631.en_US
dc.identifier.citedreferenceCarter B. D. and Medzihradsky F. ( 1990 ) Opioid receptor binding and receptor-effector coupling in intact neurons and their isolated membranes. Eur. J. Pharmacol. 183, 1744 – 1745.en_US
dc.identifier.citedreferenceChang K.-J., Wei E. T., Killian A., and Chang J.-K. ( 1983 ) Potent morphiceptin analogs: structure-activity relationships and morphine-like activities. J. Pharmacol. Exp. Ther. 227, 403 – 408.en_US
dc.identifier.citedreferenceClark M. J. and Medzihradsky F. ( 1987 ) Coupling of multiple opioid receptors to GTPase following selective receptor alkylation in brain membranes. Neuropharmacology 26, 1763 – 1770.en_US
dc.identifier.citedreferenceClark M. J., Carter B. D., and Medzihradsky F. ( 1988 ) Selectivity of ligand binding to opioid receptors in brain membranes from the rat, monkey and guinea pig. Eur. J. Pharmacol. 148, 343 – 351.en_US
dc.identifier.citedreferenceClark M. J., Nordby G. L., and Medzihradsky F. ( 1989 ) Relationship between opioid-receptor occupancy and stimulation of low- K m GTPase in brain membranes. J. Neurochem. 52, 1162 – 1169.en_US
dc.identifier.citedreferenceCosta T., Wuster M., Gramsch C., and Here A. ( 1985 ) Multiple states of opioid receptors may modulate adenylate cyclase in intact neuroblastoma X glioma hybrid cells. Mol Pharmacol. 28, 146 – 154.en_US
dc.identifier.citedreferenceCosta T., Klinz F., Vachon L., and Herz A. ( 1988 ) Opioid receptors are coupled tightly to G proteins but loosely to adenylate cyclase in NG108–15 cell membranes. Mol. Pharmacol. 34, 744 – 754.en_US
dc.identifier.citedreferenceCreese I. and Snyder S. H. ( 1975 ) Receptor binding and pharmacological activity of opiates in the guinea-pig intestine. J. Pharmacol. Exp. Ther. 194, 205 – 219.en_US
dc.identifier.citedreferenceFantozzi R., Mullikin-Kilpatrick D., and Blume A. J. ( 1981 ) Irreversible inactivation of the opiate receptors in the neuroblastoma X glioma hybrid NG108-15 by chlornaltrexamine. Mol. Pharmacol. 20, 8 – 15.en_US
dc.identifier.citedreferenceFischel S. V. and Medzihradsky F. ( 1981 ) Scatchard analysis of opiate receptor binding. Mol. Pharmacol. 20, 269 – 279.en_US
dc.identifier.citedreferenceFischel S. V. and Medzihradsky F. ( 1985 ) Assessment of membrane permeability in primary cultures of neurons and glia in response to osmotic perturbation. J. Neurosci. Res. 13, 369 – 380.en_US
dc.identifier.citedreferenceFisher S. K. and Snider R. M. ( 1987 ) Differential receptor occupancy requirements for muscarinic cholinergic stimulation of lipid hydrolysis in brain and in neuroblastomas. Mol. Pharmacol. 32, 81 – 90.en_US
dc.identifier.citedreferenceHonegger P. and Richelson E. ( 1976 ) Biochemical differentiation of mechanically dissociated mammalian brain in aggregating cell culture. Brain Res. 109, 335 – 354.en_US
dc.identifier.citedreferenceKazmi S. M. I. and Mishra R. K. ( 1987 ) Comparative pharmacological properties and functional coupling of Μ and Δ opioid receptor sites in human neuroblastoma SH-SY5Y cells. Mol. Pharmacol. 32, 109 – 118.en_US
dc.identifier.citedreferenceKoski G. and Klee W. A. ( 1981 ) Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis. Proc. Natl. Acad. Sci. USA 78, 4185 – 4189.en_US
dc.identifier.citedreferenceKurose H., Katada T., Amano T., and Ui M. ( 1983 ) Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via Α-adrenergic, cholinergic., and opiate receptors in neuroblastoma X glioma hybrid cells. J. Biol. Chem. 258, 4870 – 4875.en_US
dc.identifier.citedreferenceLaw P. Y., Wu J., Koehler J. E., and Loh H. H. ( 1981 ) Demonstration and characterization of opiate inhibition of the striatal adenylate cyclase. J. Neurochem. 36, 1834 – 1846.en_US
dc.identifier.citedreferenceLaw P. Y., Hom D. S., and Loh H. H. ( 1983 ) Opiate regulation of adenosine 3′:5′-cyclic monophosphate level in neuroblastoma X glioma NG108-15 hybrid cells. Relationship between receptor occupancy and effect. Mol. Pharmacol. 23, 26 – 35.en_US
dc.identifier.citedreferenceLowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. ( 1951 ) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 – 275.en_US
dc.identifier.citedreferenceMedzihradsky F. and Marks M. J. ( 1975 ) Measures of cell viability. Biochem. Med. 13, 164 – 177.en_US
dc.identifier.citedreferenceMunson P. J. and Rodbard D. ( 1980 ) LIGAND: a versatile approach for characterization of ligand-binding systems. Anal. Biochem. 107, 220 – 239.en_US
dc.identifier.citedreferenceNijssen P. C. G. and Childers S. R. ( 1987 ) Characteristics of sodium-induced increase in opiate antagonist binding sites in rat brain membranes. Eur. J. Pharmacol. 135, 355 – 364.en_US
dc.identifier.citedreferenceOlasmaa M. and Terenius L. ( 1988 ) Prolonged exposure of human neuroblastoma SH-SY5Y cell line to morphine and oxotremorine modulates signal transduction in adenylate cyclase system. Brain Res. 475, 291 – 296.en_US
dc.identifier.citedreferencePaterson S. J., Robson L. E., and Kosterlitz H. W. ( 1986 ) Control by cations of opioid binding in guinea pig brain membranes. Proc. Natl. Acad. Sci. USA 83, 6216 – 6220.en_US
dc.identifier.citedreferencePert C. B. and Snyder S. H. ( 1974 ) Opiate receptor binding of agonists and antagonists affected differentially by sodium. Mol. Pharmacol. 10, 868 – 879.en_US
dc.identifier.citedreferencePorzig H. ( 1982 ) Are there differences in the Β-receptor-adenylate cyclase systems of fragmented and living cells ? in More About Receptors ( Lamble J. W., ed ), pp. 25 – 31. Elsevier, New York.en_US
dc.identifier.citedreferencePuttfarcken P., Werling L. L., Brown S. R., Cote T. E., and Cox B. M. ( 1986 ) Sodium regulation of agonist binding at opioid receptors. I. Effects of sodium replacement on binding at Μ- and Δ-type receptors in 7315c and NG108-15 cells and cell membranes. Mol. Pharmacol. 30, 81 – 89.en_US
dc.identifier.citedreferenceRemmers A. E. and Medzihradsky F. ( 1991a ) Reconstitution of high-affinity opioid agonist binding in brain membranes. Proc. Natl. Acad. Sci. USA 88, 2171 – 2175.en_US
dc.identifier.citedreferenceRemmers A. E. and Medzihradsky F. ( 1991b ) Resolution of biphasic binding of the opioid antagonist naltrexone in brain membranes. J. Neurochem. 57, 1265 – 1269.en_US
dc.identifier.citedreferenceRoth B. L., Laskowski M. B., and Coscia C. J. ( 1981 ) Evidence for distinct subcellular sites of opiate receptors. Demonstration of opiate receptors in smooth microsomal fractions isolated from rat brain. J. Biol. Chem. 256, 10117 – 10123.en_US
dc.identifier.citedreferenceSchweigerer L., Schmidt W., Teschemacher H., and Gramsch C. ( 1985 ) Β-Endorphin: surface binding and internalization in thymoma cells. Proc. Natl. Acad. Sci. USA 82, 5751 – 5755.en_US
dc.identifier.citedreferenceSharma S. D., Nirenberg M., and Klee W. A. ( 1975 ) Morphine receptors as regulators of adenylate cyclase activity. Proc. Natl. Acad. Sci. USA 72, 590 – 594.en_US
dc.identifier.citedreferenceSladeczek F., Bockaert J., and Mauger J. ( 1983 ) Differences between agonist and antagonist binding to Α-1-adrenergic receptors of intact and broken-cell preparations. Mol. Pharmacol. 24, 392 – 397.en_US
dc.identifier.citedreferenceStaehelin M., Simons P., Jaegg K., and Wigger N. ( 1983 ) CGP-12177. A hydrophilic Β-adrenergic receptor radioligand reveals high affinity binding of agonists to intact cells. J. Biol. Chem. 258, 3496 – 3502.en_US
dc.identifier.citedreferenceToll L. ( 1990 ) Μ-Opioid receptor binding in intact SH-SY5Y neuroblastoma cells. Eur. J. Pharmacol. 176, 213 – 217.en_US
dc.identifier.citedreferenceValentino R. J., Herling S., Woods J. H., Medzihradsky F., and Merz H. ( 1981 ) Quaternary naltrexone: evidence for the central mediation of discriminative stimulus effects of narcotic agonists and antagonists. J. Pharmacol. Exp. Ther. 217, 652 – 659.en_US
dc.identifier.citedreferenceWerling L. L., Zarr G. D., Brown S. R., and Cox B. M. ( 1985 ) Opioid binding to rat and guinea-pig neural membranes in the presence of physiological cations at 37°C. J. Pharmacol. Exp. Ther. 233, 722 – 728.en_US
dc.identifier.citedreferenceWilkinson L. ( 1988 ) SYSTAT: The System for Statistics. SYSTAT, Evanston, Illinois.en_US
dc.identifier.citedreferenceYu V. C. and SadÉe W. ( 1988 ) Efficacy and tolerance of narcotic analgesics at the Μ opioid receptor in differentiated human neuroblastoma cells. J. Pharmacol. Exp. Ther. 245, 350 – 355.en_US
dc.identifier.citedreferenceYu V. C., Richards M. L., and SadÉe W. ( 1986 ) A human neuro-blastoma cell line expresses Μ and Δ opioid receptor sites. J. Biol. Chem. 261, 1065 – 1070.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.