Show simple item record

Protein-to-Protein Interactions: Criteria Defining the Assembly of the Enamel Organic Matrix

dc.contributor.authorPaine, M. L.en_US
dc.contributor.authorKrebsbach, Paul H.en_US
dc.contributor.authorChen, L. S.en_US
dc.contributor.authorPaine, C. T.en_US
dc.contributor.authorYamada, Y.en_US
dc.contributor.authorDeutsch, D.en_US
dc.contributor.authorSnead, Malcolm L.en_US
dc.date.accessioned2010-04-13T18:55:44Z
dc.date.available2010-04-13T18:55:44Z
dc.date.issued1998en_US
dc.identifier.citationPaine, M.L.; Krebsbach, P.H.; Chen, L.S.; Paine, C.T.; Yamada, Y.; Deutsch, D.; Snead, M.L. (1998). "Protein-to-Protein Interactions: Criteria Defining the Assembly of the Enamel Organic Matrix." Journal of Dental Research 3(77): 496-502. <http://hdl.handle.net/2027.42/66872>en_US
dc.identifier.issn0022-0345en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/66872
dc.description.abstractEnamel crystallites form in a protein matrix located proximal to the ameloblast cell layer. This unique organic extracellular matrix is constructed from structural protein components biosynthesized and secreted by ameloblasts. To date, three distinct classes of enamel matrix proteins have been cloned. These are the amelogenins, tuftelin, and ameloblastin, with recent data implicating ameloblastin gene expression during cementogenesis. The organic enamel extracellular matrix undergoes assembly to provide a three-dimensional array of protein domains that carry out the physiologic function of guiding enamel hydroxyapatite crystallite formation. Using the yeast two-hybrid system, we have surveyed these three known enamel gene products for their ability to direct self-assembly. We measured the capacity of the enamel gene products to direct protein-to-protein interactions, a characteristic of enamel proteins predicated to be required for self-assembly. We provide additional evidence for the self-assembly nature of amelogenin and tuftelin. Ameloblastin self-assembly could not be demonstrated, nor were protein-to-protein interactions observed between ameloblastin and either amelogenin or tuftelin. Within the limits of the yeast two-hybrid assay, these findings constrain the emerging model of enamel matrix assembly by helping to define the limits of enamel matrix protein-protein interactions that are believed to guide enamel mineral crystallite formation.en_US
dc.format.extent3108 bytes
dc.format.extent1091509 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherSAGE Publicationsen_US
dc.subject.otherAmelinen_US
dc.subject.otherAmeloblastinen_US
dc.subject.otherAmelogeninen_US
dc.subject.otherBiomineralizationen_US
dc.subject.otherEnamelen_US
dc.subject.otherEnamelinen_US
dc.subject.otherProtein Matrix Assemblyen_US
dc.subject.otherSheathlinen_US
dc.subject.otherTooth Developmenten_US
dc.subject.otherTuftelinen_US
dc.subject.otherYeast Two-hybrid Systemen_US
dc.subject.otherProtein Interactions.en_US
dc.titleProtein-to-Protein Interactions: Criteria Defining the Assembly of the Enamel Organic Matrixen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumThe University of Michigan, School of Dentistry, Room4207, Ann Arbor, Michigan 48109-1078en_US
dc.contributor.affiliationotherUniversity of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 142, Los Angeles, California 90033en_US
dc.contributor.affiliationotherUniversity of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 142, Los Angeles, California 90033en_US
dc.contributor.affiliationotherUniversity of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 142, Los Angeles, California 90033en_US
dc.contributor.affiliationotherLaboratory of Craniofacial Developmental Biology and Regeneration, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892en_US
dc.contributor.affiliationotherDental Research Unit, Hebrew University, Hadassah Facultyof Dental Medicine, Jerusalem, Israelen_US
dc.contributor.affiliationotherUniversity of Southern California, School of Dentistry, Center for Craniofacial Molecular Biology, 2250 Alcazar Street, CSA Room 142, Los Angeles, California 90033en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/66872/2/10.1177_00220345980770030901.pdf
dc.identifier.doi10.1177/00220345980770030901en_US
dc.identifier.citedreferenceAusubel FM, Brent R., Kingston RE, Moore DD, Seidman JG, Smith JA, et al., editors (1995). Current protocols in molecular biology. New York: Wiley, p. 1.4.3.en_US
dc.identifier.citedreferenceAldred MJ, Crawford PJ, Roberts E., Thomas NS (1992). Identification of a nonsense mutation in the amelogenin gene (AMELX) in a family with X-linked amelogenesis imperfecta (AIH1). Hum Genet 90:413-416.en_US
dc.identifier.citedreferenceBartel PL, Chien CT, Sternglanz R., Fields S. (1993). Using the two-hybrid system to detect protein-protein interactions. In: Cellular interactions in development: a practical approach. Hartley DA, editor. Oxford: Oxford University Press, pp. 153-179.en_US
dc.identifier.citedreferenceBashir MM, Abrams WR, Rosenbloom J. (1998). Molecular cloning and characterization of the bovine and human tuftelin genes. Proceedings of the 6th International Symposium on the Composition, Properties and Fundamental Structure of Tooth Enamel. Connect Tissue Res (in press).en_US
dc.identifier.citedreferenceCerny R., Slaby I., Hammarstrom L., Wurtz T. (1996). A novel gene expressed in rat ameloblasts codes for proteins with cell binding domains. J Bone Min Res 11:883-891.en_US
dc.identifier.citedreferenceChevray PM, Nathans D. (1992). Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc Natl Acad Sci USA 89 :5789-5793.en_US
dc.identifier.citedreferenceDeutsch D., Palmon A., Dafni L., Shenkman A., Sherman J., Fisher LW, et al. (1991a). In: Mechanisms and phylogeny of mineralization in biological systems. Suga S, Nakahara H, editors. Tokyo: Springer-Verlag, pp. 73-77.en_US
dc.identifier.citedreferenceDeutsch D., Palmon A., Fisher LW, Kolodny N., Termine JD, Young MF (1991b). Sequencing of bovine enamelin ("tuftelin"), a novel acidic enamel protein. J Biol Chem 266:16021-16028.en_US
dc.identifier.citedreferenceDeutsch D., Dafni L., Palmon A., Hekmati M., Young MF, Fisher LW (1997). Enamel mineralization and amelogenesis imperfecta. In: Dental enamel. Chadwick DJ, Cardew G, editors. Ciba Foundation Symposium 205. Chichester: John Wiley and Sons, pp. 135-155.en_US
dc.identifier.citedreferenceDoi Y., Eanes ED, Shimokawa H., Termine JD (1984). Inhibition of seeded growth of enamel apatite crystals by amelogenin and enamelin proteins in vitro. J Dent Res 63:98-105.en_US
dc.identifier.citedreferenceFincham AG, Moradian-Oldak J., Simmer JP, Sarte P., Lau EC, Diekwisch T., et al. (1994). Self-assembly of a recombinant amelogenin protein generates supramolecular structures. J Struct Biol 112:103-109.en_US
dc.identifier.citedreferenceFincham AG, Moradian-Oldak J., Diekwisch TG, Lyaruu DM, Wright JT, Bringas P. Jr, et al. (1995). Evidence for amelogenin "nanospheres" as functional components of secretory-stage enamel matrix. J Struct Biol 115:50-59.en_US
dc.identifier.citedreferenceFields S., Song 0 (1989). A novel genetic system to detect protein-protein interactions. Nature 340:245-246.en_US
dc.identifier.citedreferenceFong CD, Slaby I., Hammarstrom L. (1996). Amelin: an enamel related protein, transcribed in the cells of epithelial root sheath. J Bone Min Res 11:892-898.en_US
dc.identifier.citedreferenceHannon GJ, Beach D. (1994). pl5INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371:257-261.en_US
dc.identifier.citedreferenceHu C-C., Fukae M., Uchida T., Qian Q., Zhang CH, Ryu OH, et al. (1997). Sheathlin: cloning, c DNA/polypeptide sequences, and immunolocalization of porcine enamel sheath proteins. J Dent Res 76:648-657.en_US
dc.identifier.citedreferenceKrebsbach PH, Lee SK, Matsuki Y., Kozak CA, Yamada KM, Yamada Y. (1996). Full-length sequence, localization, and chromosomal mapping of ameloblastin: a novel tooth-specific gene. J Biol Chem 271:4431-4435.en_US
dc.identifier.citedreferenceLagerstrom M., Dahl N., Nakahori Y., Backman B., Landegren U., Pettersson U. (1991). A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics 10:971-975.en_US
dc.identifier.citedreferenceLagerstrom-Fermer M., Nilsson M., Backman B., Salido E., Shapiro L., Pettersson U., et al. (1995). Amelogenin signal peptide mutation: correlation between mutations in the amelogenin gene (AMGX) and manifestations of X-linked amelogenesis imperfecta. Genomics 26:159-162.en_US
dc.identifier.citedreferenceLane DP, Crawford LV (1979). T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261-263.en_US
dc.identifier.citedreferenceLau EC, Mohandas TK, Shapiro LJ, Slavkin HC, Snead ML (1989). Human and mouse amelogenin gene loci are on the sex chromosomes. Genomics 4:162-168.en_US
dc.identifier.citedreferenceLau EC, Simmer JP, Bringas P. Jr, Hsu DD, Hu CC, Zeichner-David M., et al. (1992). Alternative splicing of the mouse amelogenin primary RNA transcript contributes to amelogenin heterogeneity. Biochem Biophys Res Commun 188:1253-1260.en_US
dc.identifier.citedreferenceLee SK, Krebsbach PH, Matsuki Y., Nanci A., Yamada KM, Yamada Y. (1996). Ameloblastin expression in rat incisor and human tooth germs. Int J Dev Biol 40:1141-1150.en_US
dc.identifier.citedreferenceLi B., Fields S. (1993). Identification of mutations in p53 that affects its binding to SV40 large T antigen by using the yeast two-hybrid system. FASEB J 7:957-963.en_US
dc.identifier.citedreferenceLimeback H., Simic A. (1990). Biochemical characterization of stable high molecular-weight aggregates of amelogenins formed during porcine enamel development. Arch Oral Biol 35:459-468.en_US
dc.identifier.citedreferenceLowenstam HA, Weiner S. (1989). Biomineralization processes. In: On biomineralization. Chapter 3. New York: Oxford University Press, pp. 25-49.en_US
dc.identifier.citedreferenceLyngstadaas SP, Risnes S., Sproat BS, Thrane PS, Prydz HP (1995). A synthetic, chemically modified ribozyme eliminates amelogenin, the major translation product in developing mouse enamel in vivo. EMBO J 14:5224-5229.en_US
dc.identifier.citedreferenceMac Dougall M., Du Pont BR, Simmons D., Reus B., Krebsbach P., Karrman C., et al. (1997). Ameloblastin gene (AMBN) maps within the critical autosomal dominant amelogenesis imperfecta region at chromosome 4q21. Genomics 41:115-118.en_US
dc.identifier.citedreferenceMann S. (1993). Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature (Lond) 365:499-505.en_US
dc.identifier.citedreferenceMechanic GL, Katz EP, Glimcher MJ (1967). The sephadex gel filtration characteristics of the neutral soluble proteins of embryonic bovine enamel. Biochem Biophys Acta 133:97-113.en_US
dc.identifier.citedreferenceMoradian-Oldak J., Simmer JP, Lau EC, Sarte PE, Slavkin HC, Fincham AG (1994a). Detection of monodisperse aggregates of a recombinant amelogenin by dynamic light scattering. Biopolymers 34:1339-1347.en_US
dc.identifier.citedreferenceMoradian-Oldak J., Simmer JP, Sarte PE, Zeichner-David M., Fincham AG (1994b). Specific cleavage of a recombinant murine amelogenin at the carboxy-terminal region by a proteinase fraction isolated from developing bovine tooth enamel. Arch Oral Biol 39:647-656.en_US
dc.identifier.citedreferenceMosteller RD, Han J., Broek D. (1994). Identification of residues of the H-ras protein critical for functional interaction with guanine nucleotide exchange factors. Mol Cell Biol 14 :1104-1112.en_US
dc.identifier.citedreferenceMosteller RD, Park W., Broek D. (1995). Analysis of interaction between Ras and CDC25 guanine nucleotide exchange factor using yeast GAL4 two-hybrid system. Meth Enzymol 255:135-148.en_US
dc.identifier.citedreferenceNikiforuk G., Simmons NS (1965). Purification and properties of protein from embryonic bovine enamel. J Dent Res 44 :1119-1122.en_US
dc.identifier.citedreferencePaine ML, Snead ML (1997). Protein interactions during assembly of the enamel organic extracellular matrix. J Bone Min Res 12:221-227.en_US
dc.identifier.citedreferencePaine ML, Deutsch D., Snead ML (1996). Carboxyl-region of tuftelin mediates self-assembly. Connect Tissue Res 35 :157-161.en_US
dc.identifier.citedreferenceSambrook J., Fritsch EF, Maniatis T. (1989). Molecular cloning. A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 14.18, 16. 66.en_US
dc.identifier.citedreferenceSasaki T., Tagaki M., Yanagisawa T. (1997). Structure and function of secretory ameloblasts in enamel formation. In: Dental enamel. Chadwick DJ, Cardew G, editors. Ciba Foundation Symposium 205. Chichester: John Wiley and Sons, pp. 32-53.en_US
dc.identifier.citedreferenceSimmer JP, Lau EC, Hu CC, Aoba T., Lacey M., Nelson D., et al. (1994). Isolation and characterization of a mouse amelogenin expressed in Escherichia coli. Calcif Tissue Intl 54:312-319.en_US
dc.identifier.citedreferenceSlavkin HC, Boyde A. (1974). Cementum: an epithelial secretory product? (abstract) J Dent Res 53:157.en_US
dc.identifier.citedreferenceSnead ML (1996). Enamel biology logodaedaly: Getting to the root of the problem, or "Who's on first..."(editorial). J Bone Min Res 11:899-904.en_US
dc.identifier.citedreferenceTraub W., Jodaiken A., Weiner S. (1984). Diffraction studies of enamel protein-mineral structural relations. In: The chemistry and biology of mineralized tissues. Butler WT, editor. Birmingham, AL: Ebsco Media, pp. 221-226.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.