Show simple item record

Effects of Pacing When Using Material Handling Manipulators

dc.contributor.authorNussbaum, Mauryen_US
dc.contributor.authorChaffin, Don B.en_US
dc.date.accessioned2010-04-13T19:06:53Z
dc.date.available2010-04-13T19:06:53Z
dc.date.issued1999en_US
dc.identifier.citationNussbaum, Maury; Chaffin, Don (1999). "Effects of Pacing When Using Material Handling Manipulators." Human Factors: The Journal of Human Factors and Ergonomics Society 2(41): 214-225. <http://hdl.handle.net/2027.42/67067>en_US
dc.identifier.issn0018-7208en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/67067
dc.description.abstractCommon manipulator-assisted materials handling tasks were performed in a laboratory simulation at self-selected and faster (paced) speeds. The effects of pacing on peak hand forces, torso kinematics, spine moments and forces, and muscle antagonism were determined, along with any influences of several task variables on these effects. The faster trials were performed 20% more rapidly than the self-paced trials. It was found that (a) achieving this level of performance required 10% higher hand forces and 5%-10% higher torso moments, (b) consistent torso postures and motions were used for both speed conditions, and (c) the faster trials resulted in 10% higher spine forces and 15% higher levels of lumbar muscle antagonism. On whole, these results suggest a higher risk of musculoskeletal injury associated with performance of object transfers at faster than self-selected speeds with and without a manipulator. Further analysis provided evidence that the use of manipulators involves higher levels of motor coordination than do manual tasks. Several implications regarding the use of material handling manipulators in paced operations are discussed. Results from this investigation can be used in the design, evaluation, and selection of material handling manipulators.en_US
dc.format.extent3108 bytes
dc.format.extent179380 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherSAGE Publicationsen_US
dc.titleEffects of Pacing When Using Material Handling Manipulatorsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPsychologyen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherVirginia Polytechnic Institute and State University, Blacksburg, Virginiaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/67067/2/10.1518_001872099779591240.pdf
dc.identifier.doi10.1518/001872099779591240en_US
dc.identifier.citedreferenceAdams, M. A., & Dolan, P. (1995). Recent advances in lumbar spinal mechanics and their clinical significance. Clinical Biomechanics, 10, 3–19.en_US
dc.identifier.citedreferenceAyoub, M. A. (1982). Control of manual lifting hazards: Training in safe handling. Journal of Occupational Medicine, 24, 573–577.en_US
dc.identifier.citedreferenceBattiÉ, M. C., Bigos, S. J., Fisher, L. D., Hansson, T. H., Jones, M. E., & Wortley, M. D. (1989). Isometric lifting strength as a predictor of industrial back pain reports. Spine, 14, 851–856.en_US
dc.identifier.citedreferenceBean, J. C., Chaffin, D. B., & Schultz, A. B. (1988). Biomechanical model calculations of muscle contraction forces: A double linear programming method. Journal of Biomechanics, 21, 59–66.en_US
dc.identifier.citedreferenceBush-Joseph, C., Schipplein, O., Andersson, G. B. J., & Andriacchi, T. P. (1988). Influence of dynamic factors on the lumbar spine moment in lifting. Ergonomics, 31, 211–216.en_US
dc.identifier.citedreferenceChaffin, D. B., Herrin, G. D., & Keyserling, W. M. (1978). Preemployment strength testing. Journal of Occupational Medicine, 20, 403–408.en_US
dc.identifier.citedreferenceChaffin, D. B., & Park, K. S. (1973). A longitudinal study of low-back pain as associated with occupational lifting factors. American Industrial Hygiene Association Journal, 34, 513–525.en_US
dc.identifier.citedreferenceChaffin, D. B., Stump, B. S., Nussbaum, M. A., & Baker, G. (1999). Low back stresses when learning to use a material handling device. Ergonomics, 42, 94–110.en_US
dc.identifier.citedreferenceCholewicki, J., Mc Gill, S. M., & Norman, R. W. (1995). Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: Towards development of a hybrid approach. Journal of Biomechanics, 28, 321–331.en_US
dc.identifier.citedreferenceDanz, M. E., & Ayoub, M. M. (1992). The effects of speed, frequency, and load on measured hand forces for a floor to knuckle lifting task. Ergonomics, 35, 833–843.en_US
dc.identifier.citedreferenceGranata, K. P., & Marras, W. S. (1993). An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions. Journal of Biomechanics, 26, 1429–1438.en_US
dc.identifier.citedreferenceGranata, K. P., & Marras, W. S. (1995a). An EMG-assisted model of trunk loading during free-dynamic lifting. Journal of Biomechanics, 28, 1309–1317.en_US
dc.identifier.citedreferenceGranata, K. P., & Marras, W. S. (1995b). The influence of trunk muscle coactivity on dynamic spinal loads. Spine, 20, 913–919.en_US
dc.identifier.citedreferenceHughes, R. E. (1991). Empirical evaluation of optimization-based lumbar muscle force predictions models. Unpublished doctoral dissertation, University of Michigan, Ann Arbor.en_US
dc.identifier.citedreferenceLavender, S. A., Tsuang, Y. H., Andersson, G. B. J., Hafezi, A., & Shin, C. C. (1992). Trunk muscle cocontraction: The effects of moment direction and moment magnitude. Journal of Orthopaedic Research, 10, 691–700.en_US
dc.identifier.citedreferenceMarras, W. S., Lavender, S. A., Leurgans, S. E., Rajulu, S. L., Alread, W. G., Fathallah, F. A., & Furguson, S. A. (1993). The role of dynamic three-dimensional trunk motion in occupationally related low back disorders: The effects of workplace factors, trunk position and trunk motion characteristics in the risk of injury. Spine, 18, 617–628.en_US
dc.identifier.citedreferenceMc Gill, S. M. (1992). A myoelectrically based dynamic three-dimensional model to predict loads on the lumbar spine tissues during lateral bending. Journal of Biomechanics, 25, 395–414.en_US
dc.identifier.citedreferenceMc Gill, S. M. (1997). The biomechanics of low back injury: Implications on current practice in industry and the clinic. Journal of Biomechanics, 30, 465–475.en_US
dc.identifier.citedreferenceNussbaum, M. A., & Chaffin, D. B. (1996). Development and evaluation of a geometric model of the human torso. Clinical Biomechanics, 11, 25–34.en_US
dc.identifier.citedreferenceNussbaum, M. A., & Chaffin, D. B. (1998). Lumbar muscle force estimation using a subject-invariant 5-parameter EMG-based model. Journal of Biomechanics, 31, 667–672.en_US
dc.identifier.citedreferenceNussbaum, M. A., Chaffin, D. B., & Baker, G. (in press). Biomechanical analysis of material handling manipulators in short distance transfers of moderate mass objects: Joint strength, spine forces, and muscular antagonism. Ergonomics.en_US
dc.identifier.citedreferenceNussbaum, M. A., Chaffin, D. B., Stump, B. S., Baker, G., & Foulke, J. (1998). Motion times, hand forces, and trunk kinematics when using material handling manipulators in short distance transfers of moderate mass objects. Manuscript submitted for publication.en_US
dc.identifier.citedreferenceNussbaum, M. A., Zhang, X., & Chaffin, D. B. (1999). Heuristics for locating upper extremity joint centers from surface markers: Empirical derivation, evaluation, and optimization-based enhancement. Manuscript submitted for publication.en_US
dc.identifier.citedreferenceResnick, M. L., & Chaffin, D. B. (1996). Kinematics, kinetics, and psychophysical perceptions in symmetric and twisting pushing and pulling tasks. Human Factors, 38, 114–129.en_US
dc.identifier.citedreferenceSnook, S. H. (1987). Approaches to preplacement testing and selection of workers. Ergonomics, 30, 241–247.en_US
dc.identifier.citedreferenceSowden, C., Jimmerson, G., Joseph, B., & Chaffin, D. B. (1998). Material and part handling in manufacturing. In P. Mitchell (Ed.), Tool and manufacturing engineers handbook 4th ed., pp. 7-1–7-7). Dearborn, MI: Society of Manufacturing Engineers.en_US
dc.identifier.citedreferenceThelen, D. G., Schultz, A. B., & Ashton-Miller, J. A. (1995). Cocontraction of lumbar muscles during the development of time-varying triaxial moments. Journal of Orthopaedic Research, 13, 390–398.en_US
dc.identifier.citedreferenceWinter, D. A. (1990). Biomechanics and motor control of human movement (2nd ed.). New York: Wiley.en_US
dc.identifier.citedreferenceWoldstad, J. C., & Chaffin, D. B. (1994). Dynamic push and pull forces while using a manual material handling assist device. IIE Transactions, 26, 77–88.en_US
dc.identifier.citedreferenceWoldstad, J. C., & Reasor, R. J. (1996). Manual materials assist devices. In A. Bhattacharya & J. D. Mc Glothlin(Eds.), Occupational ergonomics: Theory and applications (pp. 351–365. New York: Dekker.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.