Show simple item record

Melatonin Chimeras Alter Reproductive Development and Photorefractoriness in Siberian Hamsters

dc.contributor.authorPrendergast, Brianen_US
dc.contributor.authorZucker, Irvingen_US
dc.contributor.authorYellon, Steven M.en_US
dc.contributor.authorRingold, Danielen_US
dc.contributor.authorGorman, Michaelen_US
dc.date.accessioned2010-04-13T19:19:44Z
dc.date.available2010-04-13T19:19:44Z
dc.date.issued1998en_US
dc.identifier.citationPrendergast, Brian; Zucker, Irving; Yellon, Steven; Ringold, Daniel; Gorman, Michael (1998). "Melatonin Chimeras Alter Reproductive Development and Photorefractoriness in Siberian Hamsters." Journal of Biological Rhythms 13(6): 518-531. <http://hdl.handle.net/2027.42/67291>en_US
dc.identifier.issn0748-7304en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/67291
dc.description.abstractNightly melatonin (MEL) durations > 8 h provoke gonadal regression and decreases in body mass, whereas signals < 7 h stimulate gonadal and somatic growth in male Siberian hamsters. The authors sought to determine the minimum frequency of short MEL signals sufficient to induce the long-day phenotype in several photoperiodic traits. D,L-propranolol (hereafter propranolol) injections shortened MEL signals on the night of treatment without altering MEL on the subsequent night; this permitted interpolation of short MEL signals at variable frequencies against a background of long MEL signals (chimeras). Hamsters kept in short days (10 h light/day, 10L) were injected with propranolol 6 h after dark onset for 28 consecutive weeks beginning at 30 days of age (Week 0) either every other day or once every 3, 6, or 9 days. Control animals were injected with saline or with propranolol during the light phase or were transferred to long days (16L) at Week 0. Hamsters in 16L underwent rapid gonadal development and increases in body mass and displayed summer pelage color, as did hamsters treated with propranolol every other day. Animals treated with propranolol less frequently than every other day uniformly maintained undeveloped gonads and winter-like body weights, but pelage color becameproportionately darker with increased frequency of propranolol treatments. The onset of spontaneous testicular development in 10L was unaffected by propranolol injections. After termination of injections at Week 28, testicular regression was not observed in most 10L animals that previously had undergone spontaneous testicular development; however, 40% of hamsters that had been injected with propranolol every 3rd night did manifest the winter phenotype after Week 28. In an alternating sequence, short MEL signals completely override long signals and induce the summer phenotype. Threshold frequencies differ for MEL stimulation of long-day pelage and gonadal phenotypes. The timing and development of refractoriness to MEL does not depend in any simple manner on the number of long MEL signals or on the accumulation of a reaction product produced by long, and depleted by short, MEL signals.en_US
dc.format.extent3108 bytes
dc.format.extent230318 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherSage Publicationsen_US
dc.subject.otherMelatoninen_US
dc.subject.otherPhodopus Sungorusen_US
dc.subject.otherReproductionen_US
dc.subject.otherFSHen_US
dc.subject.otherPhotoperiodismen_US
dc.subject.otherDen_US
dc.subject.otherL-propranololen_US
dc.titleMelatonin Chimeras Alter Reproductive Development and Photorefractoriness in Siberian Hamstersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelComplementary and Alternative Medicineen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Psychology; University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationotherDepartments of Psychology; University of California, Berkeley, CA 94720en_US
dc.contributor.affiliationotherDepartments of Psychology, Integrative Biology; University of California, Berkeley, CA 94720en_US
dc.contributor.affiliationotherCenter for Perinatal Biology, Departments of Psychology; Loma Linda University School of Medicine, Loma Linda, CA 92350en_US
dc.contributor.affiliationotherDepartments of Psychology; University of California, Berkeley, CA 94720en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/67291/2/10.1177_074873098129000345.pdf
dc.identifier.doi10.1177/074873098129000345en_US
dc.identifier.sourceJournal of Biological Rhythmsen_US
dc.identifier.citedreferenceBartness TJ, Powers JB, Hastings MH, Bittman EL, and Goldman BD (1993) The timed infusion paradigm for melatonin delivery: What has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses?J Pineal Res15:161-190.en_US
dc.identifier.citedreferenceBernard DJ, Losee-Olson S, and Turek F (1997) Age-related changes in the photoperiodic responseof Siberian hamsters. Biol Reprod57:172-177.en_US
dc.identifier.citedreferenceBronson FH (1989) Mammalian Reproductive Biology, University of Chicago Press, Chicago.en_US
dc.identifier.citedreferenceDarrow JM and Goldman BD (1986) Circadian regulation of pineal melatonin and reproduction in the Djungarian hamster. J Biol Rhythms1:39-54.en_US
dc.identifier.citedreferenceDuncan MJ and Goldman BD (1984) Hormonal regulation of the annual pelage color cycle in the Djungarian hamster, Phodopus sungorus. I. Role of the gonads and pituitary. J Exp Zool230:89-95.en_US
dc.identifier.citedreferenceDuncan MJ and Goldman BD (1985) Physiological doses of prolactin stimulate pelage pigmentation in Djungarian hamster. Am J Physiol248:R664-R667.en_US
dc.identifier.citedreferenceEarnest DJ and Turek FW (1984) Periodic exposure to a brief light signal stimulates neuroendocrine-gonadal activity in golden hamsters. J Androl5:64-69.en_US
dc.identifier.citedreferenceElliott JA, Bartness TJ, and Goldman BD (1989) Effect of melatonin infusion duration and frequency on gonad, lipid, and body mass in pinealectomized male Siberian hamsters. J Biol Rhythms4:439-455.en_US
dc.identifier.citedreferenceElliott JA and Tamarkin L (1994) Complex circadian regulation of pineal melatonin and wheel-running in Syrian hamsters. J Comp Physiol A174:469-484.en_US
dc.identifier.citedreferenceFreeman DA and Goldman BD (1997) Photoperiod nonresponsive Siberian hamsters: Effect of age on the probability of nonresponsiveness. J Biol Rhythms12:110-121.en_US
dc.identifier.citedreferenceGorman MR (1995) Seasonal adaptations of Siberian hamsters. I. Accelerated gonadal and somatic development in increasing versus static long day lengths. Biol Reprod53:110-115.en_US
dc.identifier.citedreferenceGorman MR, Freeman DA, and Zucker I (1997) Photoperiodism in hamsters: Abrupt versus gradual changes in day length differentially entrain morning and evening circadian oscillators. J Biol Rhythms12:122-135.en_US
dc.identifier.citedreferenceGorman MR and Zucker I (1995) Testicular regression and recrudescence without subsequent photorefractoriness in Siberian hamsters. Am J Physiol269:R800-R806.en_US
dc.identifier.citedreferenceGorman MR and Zucker I (1997a) Environmental induction of photononresponsiveness in the Siberian hamster (Phodopus sungorus). Am J Physiol272:R887-R895.en_US
dc.identifier.citedreferenceGorman MR and Zucker I (1997b) Pattern of change in melatonin duration determines testicular responses in Siberian hamsters (Phodopus sungorus). Biol Reprod56:668-673.en_US
dc.identifier.citedreferenceHoffmann K (1978) Effects of short photoperiods on puberty, growth and moult in the Djungarian hamster. J Reprod Fert54:29-35.en_US
dc.identifier.citedreferenceHoffmann K (1982) The critical photoperiod in the Djungarian hamster Phodopus sungorus. In Vertebrate Circadian Systems, J Aschoff, S Daan, and G Gross, eds, pp 297-304, Springer-Verlag, Berlin.en_US
dc.identifier.citedreferenceHorton TH (1984) Growth and reproductive development of male Microtus montanus is affected by the prenatal photoperiod. Biol Reprod31:499-504.en_US
dc.identifier.citedreferenceIllnerova H (1991) The suprachiasmatic nucleus and rhythmic pineal melatonin production. In Suprachiasmatic Nucleus: The Mind’s Clock, DC Klein, RY Moore, and SM Reppert,eds, pp 197-216, Oxford University Press, New York.en_US
dc.identifier.citedreferenceKelly KK, Goldman BD, and Zucker I (1994) Gonadal growth and hormone concentrations in photoregressed Siberian hamsters: Pinealectomy versus photostimulation. Biol Reprod51:1046-1050.en_US
dc.identifier.citedreferenceLipton JS, Petterborg LJ, and Reiter RJ (1981) Influence of propranolol, phenoxybenzamine and phentolamine on the in vivo nocturnal rise of pineal melatonin levels in the Syrian hamster. Life Sci28:2377-2382.en_US
dc.identifier.citedreferenceMaywood ES, Bittman EL, and Hastings MH (1996) Lesions of the melatonin-and androgen-responsive tissue of the dorsomedial nucleus of the hypothalamus block the gonadal response of male Syrian hamsters to programmed infusions of melatonin. Biol Reprod54:470-477.en_US
dc.identifier.citedreferenceMaywood ES, Buttery RC, Vance GH, Herbert J, and Hastings MH (1990) Gonadal responses of the male Syrian hamster to programmed infusions of melatonin are sensitive to signal duration and frequency but not to signal phase or to lesions of the suprachiasmatic nuclei. Biol Reprod43:174-182.en_US
dc.identifier.citedreferenceMaywood ES and Hastings MH (1995) Lesions of the iodomelatonin-binding sites of the mediobasal hypothalamus spare the lactotropic but block the gonadotropic Prendergast response of male Syrian hamsters to short photoperiod and to melatonin. Endocrinology136:144-153.en_US
dc.identifier.citedreferenceNelson RJ and Zucker I (1987) Spontaneous testicular recrudescence of Syrian hamsters: Role of stimulatory photoperiods. Physiol Behav39:615-617.en_US
dc.identifier.citedreferencePrendergast BJ and Hugenberger JL (in press) Frequency coding of melatonin signals sufficient to induce testicular growth in photoregressed Siberian hamsters. J Neuroendocrinol.en_US
dc.identifier.citedreferencePuchalski W and Lynch GR (1986) Evidence for differences in the circadian organization of hamsters exposed to short day photoperiod. J Comp Physiol A159:7-11.en_US
dc.identifier.citedreferenceReiter RJ (1972) Evidence for refractoriness of the pituitary gonadal axis to the pineal glandand its possible implications in annual reproductive rhythms. Anat Rec173: 365-372.en_US
dc.identifier.citedreferenceShaw D and Goldman BD (1995) Influence of prenatal photoperiods on postnatal reproductive responses to daily infusions of melatonin in the Siberian hamster (Phodopus sungorus). Endocrinology136:4231-4236.en_US
dc.identifier.citedreferenceSteinlechner S, King TS, Champney TH, Spanel-Borowski K, and Reiter RJ (1984) Comparison of the effects of [.beta]-adrenergic agents on pineal serotonin N-acetyltransferase activity and melatonin content in two species of hamsters. J Pineal Res1:23-30.en_US
dc.identifier.citedreferenceStetson MH, Elliott JA, and Menaker M (1975) Photoperiodic regulation of hamster testis: Circadian sensitivity to the effects of light. Biol Reprod13:329-339.en_US
dc.identifier.citedreferenceStetson MH, Watson-Whitmyre M, and Matt KS. (1977) Termination of photorefractoriness in golden hamsters: Photoperiodic requirements. J Exp Zool202:81-88.en_US
dc.identifier.citedreferenceYellon SM (1996) Daily melatonin treatments regulate the circadian melatonin rhythm in the adult Djungarian hamster. J Biol Rhythms11:4-13.en_US
dc.identifier.citedreferenceYellon SM and Goldman BD (1984) Photoperiod control of reproductive development in the male Djungarian hamster (Phodopus sungorus). Endocrinology114:664-670.en_US
dc.identifier.citedreferenceYellon SM and Hilliker S (1994) Influence of acute melatonin treatment and light on the circadian melatonin rhythm in the Djungarian hamster. J Biol Rhythms9:71-81.en_US
dc.identifier.citedreferenceYellon SM, Tamarkin L, Pratt BL, and Goldman BD (1982) Pineal melatonin in the Djungarian hamster: Photoperiodic regulation of a circadian rhythm. Endocrinology111:488-492.en_US
dc.identifier.citedreferenceYellon SM and Truong HN (1998) Melatonin rhythm onset in the adult Siberian hamster: Influence of photoperiod but not 60-Hz magnetic field exposure on melatonin content in the pineal gland and in circulation. J Biol Rhythms13:52-59.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.