Show simple item record

T-Lymphocyte Interactions With Endothelium and Extracellular Matrix

dc.contributor.authorHunt, Stephen W.en_US
dc.contributor.authorHarris, Estelleen_US
dc.contributor.authorKellermann, Sirid-Aiméeen_US
dc.contributor.authorShimizu, Yojien_US
dc.date.accessioned2010-04-13T19:26:15Z
dc.date.available2010-04-13T19:26:15Z
dc.date.issued1996en_US
dc.identifier.citationHunt, Stephen; Harris, Estelle; Kellermann, Sirid-Aimée; Shimizu, Yoji (1996). "T-Lymphocyte Interactions With Endothelium and Extracellular Matrix." Critical Reviews in Oral Biology & Medicine 1(7): 59-86. <http://hdl.handle.net/2027.42/67404>en_US
dc.identifier.issn1045-4411en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/67404
dc.description.abstractT-lymphocyte movement out of the bloodstream and into tissue is critical to the success of these cells in their role in immunosurveillance. This process involves interactions of the T-cell with endothelium as well as with extracellular matrix. Central to these interactions are a number of T-cell adhesion molecules and their endothelial and extracellular matrix ligands. The identification and functional characterization of adhesion molecules have been the subject of intensive research in recent years. We highlight here the latest developments in this rapidly expanding field as they pertain to T-cell interactions with endothelial cells and extracellular matrix components, including: (1) identification of adhesion molecule families, including the selectins, mucins, integrins, immunoglobulin superfamily members, and cadherins; (2) elucidation of the multi-step adhesion cascade that mediates the rolling, arrest, and eventual diapedesis of T-cells through the vascular endothelium into the surrounding tissue; (3) the changes in adhesion molecule expression that accompany T-cell maturation and activation, and the impact of those changes on T-cell migration; (4) the functional relevance of the extracellular matrix for T-cell function; and (51 the clinical relevance of adhesion molecules and the potential for targeting these molecules for the amelioration of immune-mediated diseases.en_US
dc.format.extent3108 bytes
dc.format.extent5333244 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherSAGE Publicationsen_US
dc.subject.otherCell Adhesionen_US
dc.subject.otherIntegrinen_US
dc.subject.otherSelectinen_US
dc.subject.otherExtracellular Matrixen_US
dc.subject.otherEndothelium.en_US
dc.titleT-Lymphocyte Interactions With Endothelium and Extracellular Matrixen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivision of Pulmonary and Critical Care, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI48109en_US
dc.contributor.affiliationotherDivision of Immunopathology, Warner-Lambert/Parke-Davis Pharmaceutical Research Division, Ann Arbor, MI 48105en_US
dc.contributor.affiliationotherDepartment of Laboratory Medicine and Pathology and Center for Immunology, University of Minnesota Medical School, Box 609 UMHC, 420 Delaware St., SE, Minneapolis, MN 55455en_US
dc.contributor.affiliationotherDepartment of Laboratory Medicine and Pathology and Center for Immunology, University of Minnesota Medical School, Box 609 UMHC, 420 Delaware St., SE, Minneapolis, MN 55455en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/67404/2/10.1177_10454411960070010501.pdf
dc.identifier.doi10.1177/10454411960070010501en_US
dc.identifier.citedreferenceAdamthwaite D., Cooley MA (1994). CD8+ T-cell subsets defined by expression of CD45 isoforms differ in their capacity to produce IL-2, IFN-β and TNF-a. Immunology 81:253-260.en_US
dc.identifier.citedreferenceAger A. (1994). Lymphocyte recirculation and homing: roles of adhesion molecules and chemoattractants. Trends Cell Biol 4:326-333.en_US
dc.identifier.citedreferenceAger A., Humphries MI (1990). Use of synthetic peptides to probe lymphocyte-high endothelial cell interactions. Lymphocytes recognize a ligand on the endothelial surface which contains the CS1 adhesion motif. Int Immunol 2:921-928.en_US
dc.identifier.citedreferenceAiras L., Hellman J., Salmi M., Bono P., Puurunen T., Smith DJ, et al. (1995). CD73 is involved in lymphocyte binding to the endothelium: characterization of lymphocyte-vascular adhesion protein 2 identifies it as CD73. J Exp Med 182:1603-1608.en_US
dc.identifier.citedreferenceAlon R., Cahalon L., Hershkoviz R., Elbaz D., Reizis B., Wallach D., et al. (1994). TNF-a binds to the N-terminal domain of fibronectin and augments the β1-integrin-mediated adhesion of CD4+ T lymphocytes to the glycoprotein. J Immunol 152:1304-1313.en_US
dc.identifier.citedreferenceAlon R., Hammer DA, Springer TA (1995). Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374:539-542.en_US
dc.identifier.citedreferenceAltevogt P., Hubbe M., Ruppert M., Lohr J., Von Hoegen P., Sammar M., et al. (1995). The a4 integrin chain is a ligand for α4β7 and α4β1. J Exp Med 182:345-355.en_US
dc.identifier.citedreferenceArbones ML, Ord DC, Ley K., Ratech H., Maynard-Curry C., Otten G., et al. (1994). Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1:247-260.en_US
dc.identifier.citedreferenceBabi LFS, Moser R., Soler MTP, Picker LJ, Blaser K., Hauser C. (1995). Migration of skin-homing T-cells across cytokine-activated human endothelial cell layers involves interaction of the cutaneous lymphocyte-associated antigen (CLA), the very late antigen-4 (VLA-4), and the lymphocyte function-associated antigen-1 (LFA-1). J Immunol 154:1543-1550.en_US
dc.identifier.citedreferenceBargatze RF, Butcher EC (1993). Rapid G protein-regulated activation event involved in lymphocyte binding to high endothelial venules. J Exp Med 178:367-372.en_US
dc.identifier.citedreferenceBargatze RF, Jutila MA, Butcher EC (1995). Distinct roles of L-selectin and integrin α4β7 in lymphocyte homing to Peyer's patch-HEV in situ: the multistep model confirmed and refined. Immunity 3:99-108.en_US
dc.identifier.citedreferenceBaumhueter S., Dybdal N., Kyle C., Lasky LA (1994). Global vascular expression of murine CD34, a sialomucin-like endothelial ligand for L-selectin. Blood 84:2554-2565.en_US
dc.identifier.citedreferenceBell EB, Sparshott SM (1990). Interconversion of CD45R subsets of CD4 T-cells in vivo. Nature 348:163-166.en_US
dc.identifier.citedreferenceBerg EL, Yoshino T., Rott LS, Robinson MK, Warnock RA, Kishimoto TK, et al. (1991). The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J Exp Med 174:1461-1466.en_US
dc.identifier.citedreferenceBerg EL, Mc Evoy LM, Berlin C., Bargatze RF, Butcher EC (1993). L-selectin-mediated lymphocyte rolling on MAd CAM-1. Nature 366:695-698.en_US
dc.identifier.citedreferenceBerlin C., Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B., et al. (1993). α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAd CAM-1. Cell 74:185-195.en_US
dc.identifier.citedreferenceBerlin C., Bargatze RF, Campbell JJ, Von Andrian UH, Szabo MC, Hasslen SR, et al. (1995). a4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80:413-422.en_US
dc.identifier.citedreferenceBevilacqua MP (1993). Endothelial-leukocyte adhesion molecules. Ann Rev Immunol 11:767-804.en_US
dc.identifier.citedreferenceBird IN, Spragg JH, Ager A., Matthews N. (1993). Studies of lymphocyte transendothelial migration: analysis of migrated cell phenotypes with regard to CD31 (PECAM-1), CD45RA and CD45RO. Immunology 80:553-560.en_US
dc.identifier.citedreferenceBonifati C., Trento E., Carducci M., Sacerdoti G., Mussi A., Fazio M., et al. (1995). Soluble E-selectin and soluble tumor necrosis factor receptor (60 k D) serum levels in patients with psoriasis. Dermatology 190 :128-131.en_US
dc.identifier.citedreferenceBoudreau N., Sympson CJ, Werb Z., Bissell MJ (1995). Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891-893.en_US
dc.identifier.citedreferenceBrady HR, Spertini O., Jimenez W., Brenner BM, Marsden PA, Tedder TF (1992). Neutrophils, monocytes, and lymphocytes bind to cytokine-activated kidney glomerular endothelial cells through L-selectin (LAM-1) in vitro. J Immunol 149:2437-2444.en_US
dc.identifier.citedreferenceBrando C., Shevach EM (1995). Engagement of the vitronectin receptor (αvβ3) on murine T-cells stimulates tyrosine phosphorylation of a 115-k Da protein. J Immunol 154:2005-2011.en_US
dc.identifier.citedreferenceBrezinschek RI, Lipsky PE, Galea P., Vita R., Oppenheimer-Marks N. (1995). Phenotypic characterization of CD4+ T-cells that exhibit a transendothelial migratory capacity. J Immunol 154:3062-3077.en_US
dc.identifier.citedreferenceBrustein M., Kraal G., Mebius RE, Watson SR (1992). Identification of a soluble form of a ligand for the lymphocyte homing receptor. J Exp Med 176:1415-1419.en_US
dc.identifier.citedreferenceButcher EC (1993). Specificity of leukocyte-endothelial interactions and diapedesis physiologic and therapeutic implications of an active decision process. Res Immunol 144:695-698.en_US
dc.identifier.citedreferenceCamp RL, Scheynius A., Johansson C., Pure E. (1993). CD44 is necessary for optimal contact allergic responses but is not required for normal leukocyte extravasation. J Exp Med 178:497-507.en_US
dc.identifier.citedreferenceCampanero MR, Sanchez-Mateos P., Del Pozo MA, Sanchez-Madrid F. (1994). ICAM-3 regulates lymphocyte morphology and integrin-mediated T-cell interaction with endothelial cell and extracellular matrix ligands. J Cell Biol 127 :867-878.en_US
dc.identifier.citedreferenceCarlos TM, Harlan JM (1994). Leukocyte-endothelial adhesion molecules. Blood 84:2068-2101.en_US
dc.identifier.citedreferenceCarr MW, Roth SJ, Luther E., Rose SS, Springer TA (1994). Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA 91:3652-3656.en_US
dc.identifier.citedreferenceCassell D., Schwartz RH (1994). A quantitative analysis of antigen-presenting cell function: activated B cells stimulate naïve CD4 T-cells but are inferior to dendritic cells in providing costimulation. J Exp Med 180:1829-1840.en_US
dc.identifier.citedreferenceCepek KL, Parker CM, Madara JL, Brenner MB (1993). Integrin αEβ7 mediates adhesion of T lymphocytes to epithelial cells. J Immunol 150:3459-3470.en_US
dc.identifier.citedreferenceCepek KL, Shaw SK, Parker CM, Russell GJ, Morrow IS, Rimm DL, et al. (1994). Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature 372:190-193.en_US
dc.identifier.citedreferenceCerottini JC Mac Donald HR (1989). The cellular basis of T-cell memory. Ann Rev Immunol 7:77-89.en_US
dc.identifier.citedreferenceChan BMC, Wong JGP, Rao A., Hemler ME (1991). T-cell receptor-dependent, antigen-specific stimulation of a murine T-cell clone induces a transient, VLA protein-mediated binding to extracellular matrix. J Immunol 147:398-404.en_US
dc.identifier.citedreferenceChang AC, Salomon DR, Wadsworth S., Hong M.-JP, Mojcik CF, Otto S., et al. (1995). α3β1 and α6β1 integrins mediate laminin/merosin binding and function as costimulatory molecules for human thymocyte proliferation. J Immunol 154:500-510.en_US
dc.identifier.citedreferenceClark EA, Brugge IS (1995). Integrins and signal transduction pathways: the road taken. Science 268:233-239.en_US
dc.identifier.citedreferenceCronstein BN, Weissman G. (1993). The adhesion molecules in inflammation. Arthr Rheum 36:147-157.en_US
dc.identifier.citedreferenceDamle NK Klussman K., Leytze G., Myrdal S., Aruffo A., Ledbetter JA, et al. (1994). Costimulation of T lymphocytes with integrin ligands intercellular adhesion molecule-1 or vascular cell adhesion molecule-1 induces functional expression of CTLA-4, a second receptor for B7. J Immunol 152:2686-2697.en_US
dc.identifier.citedreferenceDanilenko DM, Rossitto PV, Van der Vieren M., Le Trong H. Mc Donough SP, Affolter VK, et al. (1995). A novel canine leukointegrin, αdβ2, is expressed by specific macrophage subpopulations in tissue and a minor CD8+ lymphocyte subpopulation in peripheral blood. J Immunol 155:35-44.en_US
dc.identifier.citedreferenceDavis LS, Oppenheimer-Marks N., Bednarczyk JL, Mc Intyre BW, Lipsky PE (1990). Fibronectin promotes proliferation of naïve and memory T-cells by signalling through both VLA-4 and VLA-5 integrin molecules. J Immunol 145:785-793.en_US
dc.identifier.citedreferenceDe Fougerolles AR, Springer TA (1992) Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J Exp Med 175 :185-190.en_US
dc.identifier.citedreferenceDiamond MS, Springer TA (1994). The dynamic regulation of integrin adhesiveness. Curr Biol 4:506-517.en_US
dc.identifier.citedreferenceDustin ML, Rothlein R., Bhan AK, Dinarello CA, Springer TA (1986). Induction by IL I and interferon-β: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol 137:245-254.en_US
dc.identifier.citedreferenceEaster DW, Hoyt DB, Ozkan AN (1988). Immunosuppression by a peptide from the gelatin binding domain of human fibronectin. J Surg Res 45:370-375.en_US
dc.identifier.citedreferenceElices M.), Tsai V., Strahl D., Goel AS, Tollefson V., Arrhenius T., et al. (1994). Expression and functional significance of alternatively spliced CS 1 fibronectin in rheumatoid arthritis microvasculature. J Clin Invest 93:405-416.en_US
dc.identifier.citedreferenceFan S.-T., Mackman N., Cui M.-Z., Edgington TS (1995). Integrin regulation of an inflammatory effector gene: direct induction of the tissue factor promoter by engagement of β1 or α4 integrin chains. J Immunol 154:3266-3274.en_US
dc.identifier.citedreferenceFaull RJ, Kovach NL, Harlan JM, Ginsberg MH (1994). Stimulation of integrin-mediated adhesion of T lymphocytes and monocytes: two mechanisms with divergent biological consequences. I Exp Med 179:1307-1316.en_US
dc.identifier.citedreferenceFerguson TA, Kupper TS (1993). Antigen-independent processes in antigen-specific immunity: a role for a4 integrin. J Immunol 150:1172-1182.en_US
dc.identifier.citedreferenceFerguson TA, Mizutani H., Kupper TS (1991). Two integrin-binding peptides abrogate T-cell-mediated immune responses in vivo. Proc Natl Acad Sci USA 88:8072-8076.en_US
dc.identifier.citedreferenceFrancis GS, Antel JP, Duquette P. (1991). Inflammatory demyelinating diseases of the central nervous system. In: Neurology in clinical practice. Bradley WG, Daroff RB, Fenichel GM, Marsden CD, editors. Boston: Butterworth-Heineman, pp. 1134-1166.en_US
dc.identifier.citedreferenceFreedman AS, Rhynhart K., Nojima Y., Svahn J., Eliseo L., Benjamin CD, et al. (1993). Stimulation of protein tyrosine phosphorylation in human B cells after ligation of the β1 integrin VLA-4. J Immunol 150:1645-1652.en_US
dc.identifier.citedreferenceFriedl P., Noble PB, Zanker KS (1995). T lymphocyte locomotion in a three-dimensional collagen matrix. Expression and function of cell adhesion molecules. J Immunol 154:4973-4985.en_US
dc.identifier.citedreferenceFujii Y., Okumura M., Inada K., Nakahara K. (1992). Reversal of CD45R isoform switching in CD8+ T-cells. Cell Immunol 139:176-184.en_US
dc.identifier.citedreferenceGilat D., Hershkoviz R., Mekori YA, Vlodavsky I., Lider O. (1994). Regulation of adhesion of CD4+ T lymphocytes to intact or heparanase-treated subendothelial extracellular matrix by diffusible or anchored RANTES and MIP-1β. J Immunol 153:4899-4906.en_US
dc.identifier.citedreferenceGilat D., Hershkoviz R., Goldkorn I., Cahalon L., Korner G., Vlodavsky I., et al. (1995). Molecular behavior adapts to context : heparanase functions as an extracellular matrixdegarding enzyme or as a T-cell adhesion molecule, depending on the local p H. J Exp Med 181:1929-1934.en_US
dc.identifier.citedreferenceGodfrey HP (1990). T-cell fibronectin: an unexpected inflammatory lymphokine. Lymphokine Res 9:435-447.en_US
dc.identifier.citedreferenceGoldman R., Harvey J., Hogg N. (1992). VLA-2 is the integrin used as a collagen receptor by leukocytes. Eur J Immunol 22:1109-1114.en_US
dc.identifier.citedreferenceGriffiths CE (1994). Cutaneous leukocyte trafficking and psoriasis. Arch Dermatol 130:494-499.en_US
dc.identifier.citedreferenceGroux H., Huet S., Valentin H., Pham D., Bernard A. (1989). Suppressor effects and cyclic AMP accumulation by the CD29 molecule of CD4+ lymphocytes. Nature 339:152-154.en_US
dc.identifier.citedreferenceHamann A., Andrew DP, Jablonski-Westrich D., Holzmann B., Butcher EC (1994). Role of a4-integrins in lymphocyte homing to mucosal tissues in vivo. J Immunol 152:3282-3293.en_US
dc.identifier.citedreferenceHarlan J. (1993). Leukocyte adhesion deficiency syndrome : insights into the molecular basis of leukocyte emigration. Clin Immunol Immunopathol 67:S16-S24.en_US
dc.identifier.citedreferenceHauzenberger D., Sundqvist KG (1993). Fibronectin at the lymphocyte surface. Evidence for activation-dependent binding to VLA4 and VLA5 integrins. Scand J Immunol 37:87-95.en_US
dc.identifier.citedreferenceHauzenberger D., Klominek J., Sundqvist K-G. (1994). Functional specialization of fibronectin-binding β1integrins in T lymphocyte migration. J Immunol 153:960-971.en_US
dc.identifier.citedreferenceHemler ME (1990). VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Ann Rev Immunol 8:365-400.en_US
dc.identifier.citedreferenceHemmerich S., Bertozzi CR, Leffler H., Rosen SD (1994). Identification of the sulfated monosaccharides of Gly CAM-1, an endothelial-derived ligand for L-selectin. Biochemistry 33:4820-4829.en_US
dc.identifier.citedreferenceHershkoviz R., Alon R., Gilat D., Lider O. (1992). Activated T lymphocytes and macrophages secrete fibronectin which strongly supports cell adhesion. Cell Immunol 141:352-361.en_US
dc.identifier.citedreferenceHershkoviz R., Cahalon L., Gilat D., Miron S., Miller A., Lider O. (1993). Physically damaged extracellular matrix induces TNF-a secretion by interacting resting CD4+ T-cells and macrophages. Scand J Immunol 37:111-115.en_US
dc.identifier.citedreferenceHershkoviz R., Cahalon L., Miron S., Alon R., Sapir T., Akiyama SK, et al. (1994a). TNF-a associated with fibronectin enhances phorbol myristate acetate- or antigen-mediated integrin-dependent adhesion of CD4+ T-cells via protein tyrosine phosphorylation. J Immunol 153:554-565.en_US
dc.identifier.citedreferenceHershkoviz R., Greenspoon N., Mekori YA, Hadari R., Alon R., Kapustina G., et al. (1994b). Inhibition of CD4+ T lymphocyte binding to fibronectin and immune-cell accumulation in inflammatory sites by non-peptidic mimetics of Arg-Gly-Asp. Clin Exp Immunol 95:270-276.en_US
dc.identifier.citedreferenceHession C., Tizard R., Vassallo C., Schiffer SB, Goff D., Moy P., et al. (1991). Cloning of an alternate form of vascular cell adhesion molecule-1 (VCAM-1). J Biol Chem 266:6682-6685.en_US
dc.identifier.citedreferenceHines KL, Kulkarni AB, Mc Carthy JB, Tian H., Ward JM, Christ M., et al. (1994). Synthetic fibronectin peptides interrupt inflammatory cell infiltration in transforming growth factor β1 knockout mice. Proc Natl Acad Sci USA 91:5187-5191.en_US
dc.identifier.citedreferenceHoruk R., Wang Z., Peiper SC, Hesselgesser J. (1994). Identification and characterization of a promiscuous chemokine-binding protein in a human erythroleukemic cell line. J Biol Chem 269:17730-17733.en_US
dc.identifier.citedreferenceHou S., Doherty PC (1993). Partitioning of responder CD8+ T-cells in lymph node and lung of mice with Sendai virus pneumonia by LECAM-1 and CD45RB phenotype. J Immunol 150:5494-5500.en_US
dc.identifier.citedreferenceHourihan H., Allen TD, Ager A. (1993). Lymphocyte migration across high endothelium is associated with increases in α4β1 integrin (VLA-4) affinity. J Cell Sci 104:1049-1059.en_US
dc.identifier.citedreferenceHruska KA, Rolnick F., Huskey M., Alvarez U., Cheresh D. (1995). Engagement of the osteoclast integrin αvβ3 by osteopontin stimulates phosphatidylinositol 3-hydroxyl kinase activity. Endocrinology 136:2984-2992.en_US
dc.identifier.citedreferenceHuhtala P., Humphries MJ, Mc Carthy JB, Tremble PM, Werb Z., Damsky CH (1995). Cooperative signaling by α5β1 and α4β1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 129:867-879.en_US
dc.identifier.citedreferenceHuleatt JW, Lefrançois L. (1995). Antigen-driven induction of CD11c on intestinal intraepithelial lymphocytes and CD8+ T-cells in vivo. J Immunol 154:5684-5693.en_US
dc.identifier.citedreferenceHynes RO (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11-25.en_US
dc.identifier.citedreferenceHynes RO (1994). The impact of molecular biology on models for cell adhesion. Bio Essays 16:663-669.en_US
dc.identifier.citedreferenceImai Y., Lasky LA, Rosen SD (1993). Sulphation requirement for Gly CAM-1, an endothelial ligand for L-selectin. Nature 361:555-557.en_US
dc.identifier.citedreferenceIssekutz TB (1993). The contributions of integrins to leukocyte infiltration in inflamed tissues. Curr Top Microbiol Immnunol 184:177-185.en_US
dc.identifier.citedreferencelalkanen S., Salmi M. (1993). Vascular adhesion protein-1 (VAP-1): a new adhesion molecule recruiting lymphocytes to sites of inflammation. Res Immunol 144:746-749.en_US
dc.identifier.citedreferenceJones DA, Mcfntire LV, Smith CW, Picker LJ (1994). A twostep adhesion cascade for T-cell/endothelial cell interactions under flow conditions. J Clin Invest 94:2443-2450.en_US
dc.identifier.citedreferenceJones EY, Harlos K., Bottomley M.), Robinson RC, Driscoll PC, Edwards RM, et al. (1995). Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 A resolution. Nature 373:539-544.en_US
dc.identifier.citedreferenceKamata T. Puzon W., Takada Y. (1995). Identification of putative ligand-binding sites of the integrin α4β1 (VLA-4. CD49d/CD29). Biochem J 305:945-951.en_US
dc.identifier.citedreferenceKanner SB, Aruffo A., Chan P.-Y (1994). Lymphocyte antigen receptor activation of a focal adhesion kinase-related tyrosine kinase substrate. Proc Natl Acad Sci USA 91:10484-10487.en_US
dc.identifier.citedreferenceKansas GS, Ley K., Munro JM, Tedder TF (1993). Regulation of leukocyte rolling and adhesion to high endothelial venules through the cytoplasmic domain of L-selectin.) Exp Med 177:833-838.en_US
dc.identifier.citedreferenceKapeller R., Cantley LC (1994). Phosphatidylinositol 3-kinase. Bio Essays 16:565-576.en_US
dc.identifier.citedreferenceKarecla PJ, Bowden SJ, Green S.), Kilshaw PJ (1995). Recognition of E-cadherin on epithelial cells by the mucosal T-cell integrin αM290β7 (a Eβ7). Eur J Immunol 25:852-856.en_US
dc.identifier.citedreferenceKavanaugh AF, Davis LS, Nichols LA, Norris SH, Rothlein R., Scharschmidt LA, et al. (1994). Treatment of refractory rheumatoid arthritis with a monoclonal antibody to intercellular adhesion molecule 1. Arthr Rheum 37:992-999.en_US
dc.identifier.citedreferenceKern F., Docke WD, Reinke P., Volk HD (1994). Discordant expression of LFA-1, VLA-4α, VLA-β1, CD45RO and CD28 on T-cell subsets: evidence for multiple subsets of "memory" T-cells. Int Arch Allergy Immunol 104:17-26.en_US
dc.identifier.citedreferenceKilger G., Needham LA, Nielsen PJ, Clements J., Vestweber D., Holzmann B. (1995). Differential regulation of a4 4 integrin-dependent binding to domains 1 and 4 of vascular cell adhesion molecule-1. J Biol Chem 270:5979-5984.en_US
dc.identifier.citedreferenceKlingemann HG, Tsoi MS, Storb R. (1986). Fibronectin restores defective in vitro proliferation of patients' lymphocytes after marrow grafting. Transplantation 42:412-417.en_US
dc.identifier.citedreferenceKoopman G., Griffioen AW, Ponta H., Herrlich P., Van den Berg F., Manten-Horst E., et al. (1993). CD44 splice variants : expression on lymphocytes and in neoplasia. Res Immunol 144:750-762.en_US
dc.identifier.citedreferenceKoopman G., Keehnen RM), Lindhout E., Newman W., Shimizu Y., van Seventer GA, et al. (1994). Adhesion through the LFA-I (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J Immunol 152:3760-3767.en_US
dc.identifier.citedreferenceLaffon A., García-Vicuña R., Humbrfa A., Postigo AA, Corbf AL, De Landazuri MO, et al. (1991). Upregulated expression and function of VLA-4 fibronectin receptors on human activated T-cells in rheumatoid arthritis. J Clin Invest 88:546-552.en_US
dc.identifier.citedreferenceLasky LA (1995). Selectin-carbohydrate interactions and the initiation of the inflammatory response. Ann Rev Biochem 64:113-139.en_US
dc.identifier.citedreferenceLawrence MB, Springer TA (1991). Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859-873.en_US
dc.identifier.citedreferenceLawrence MB, Berg EL, Butcher EC, Springer TA (1995). Rolling of lymphocytes and neutrophils on peripheral node addressin and subsequent arrest on ICAM-1 in shear flow. Eur J Immunol 25 :1025-1031.en_US
dc.identifier.citedreferenceLepault F., Gagnerault M-C., Faveeuw C., Boitard C. (1994). Recirculation, phenotype and functions of lymphocytes in mice treated with monoclonal antibody MEL-14. Eur J Immunol 24:3106-3112.en_US
dc.identifier.citedreferenceLeppert D., Waubant E., Galardy R., Bunnett NW, Hauser SL (1995). T-cell gelatinases mediate basement membrane transmigration in vitro. J Immunol 154:4379-4389.en_US
dc.identifier.citedreferenceLesley J., Hyman R., Kincade PW (1993). CD44 and its interaction with extracellular matrix. Adv Immunol 54:271-335.en_US
dc.identifier.citedreferenceLesley J., Howes N., Perschl A., Hyman R. (1994). Hyaluronan binding function of CD44 is transiently activated on T-cells during an in vivo immune response. J Exp Med 180 :383-387en_US
dc.identifier.citedreferenceLey K., Tedder TF, Kansas GS (1993). L-selectin can mediate leukocyte rolling in untreated mesenteric venules in vivo independent of E- or P-selectin. Blood 82:1632-1638.en_US
dc.identifier.citedreferenceLider O., Mekori YA, Miller T., Bar-Tana R., Vlodavsky I., Baharav E., et al. (1990). Inhibition of T lymphocyte heparanase by heparin prevents T-cell migration and T-cell-mediated immunity. Eur J Immunol 20:493-499.en_US
dc.identifier.citedreferenceLo SK, Lee S., Ramos RA, Lobb R., Rosa M., Chi-Rosso G., et al. (1991). Endothelial-leukocyte adhesion molecule I stimulates the adhesive activity of leukocyte integrin CR3 (CD11b/CD18, Mac-1, αMβ2) on human neutrophils. J Exp Med 173:1493-1500en_US
dc.identifier.citedreferenceLollo BA, Chan KWH, Hanson EM, Moy VT, Brian AA (1993). Direct evidence for two affinity states for lymphocyte function-associated antigen I on activated T-cells. J Biol Chem 268:21693-21700.en_US
dc.identifier.citedreferenceLopez Rodriguez C., Nueda A., Grospierre B., Sanchez-Madrid F., Fischer A., Springer TA, et al. (1993). Characterization of two new CD 18 alleles causing severe leukocyte adhesion deficiency. Eur J Immunol 23:2792-2798.en_US
dc.identifier.citedreferenceLowe PM, Lee ML, Jackson CJ, To SST, Cooper AJ Schrieber L. (1995). The endothelium in psoriasis. Br J Dermatol 132:497-505.en_US
dc.identifier.citedreferenceLuscinskas FW, Ding H., Lichtman AH (1995). P-selectin and vascular cell adhesion molecule 1 mediate rolling and arrest, respectively, of CD4+ T lymphocytes on tumor necrosis factor β-activated vascular endothelium under flow. J Exp Med 181:1179-1186.en_US
dc.identifier.citedreferenceMackay CR (1992). Migration pathways and immunologic memory among T lymphocytes. Semin Immunol 4:51-58.en_US
dc.identifier.citedreferenceMackay CR (1994). The concept of memory T-cells. In: Handbook of T and B lymphocytes. Snow EC, editor. San Diego: Academic Press, pp. 159-177.en_US
dc.identifier.citedreferenceMakgoba MW, Bernard A., Sanders ME (1992). Cell adhesion/signalling : biology and clinical applications. Eur J Clin Invest 22:443-453.en_US
dc.identifier.citedreferenceMarlin SD, Springer TA (1987). Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen-1 (LFA-1). Cell 51:813-819.en_US
dc.identifier.citedreferenceMatsuyama T., Yamada A., Kay J., Yamada KM, Akiyama SK, Schlossman SF, et al. (1989). Activation of CD4 cells by fibronectin and anti-CD3 antibody. A synergistic effect mediated by the VLA-5 fibronectin receptor complex. J Exp Med 170:1133-1148.en_US
dc.identifier.citedreferenceMc Court PAG, Ek B., Forsberg N., Gustafson S. (1994). Intercellular adhesion molecule-1 is a cell surface receptor for hyaluronan. J Biol Chem 269:30081-30084.en_US
dc.identifier.citedreferenceMc Ever RP (1994). Selectins. Curr Opin Immunol 6:75-84.en_US
dc.identifier.citedreferenceMetlay JP, Pure E., Steinman RM (1989). Control of the immune response at the level of antigen presenting cells: a comparison of the function of dendritic cells and B lymphocytes. Adv Immunol 47 :45-116.en_US
dc.identifier.citedreferenceMignati P., Rifkin DB (1993). Biology and biochemistry of proteinases in tumor invasion. Phusiol Rev 73:161-195.en_US
dc.identifier.citedreferenceMobley JL, Dailey MO (1992). Regulation of adhesion molecule expression by CD8 T-cells in vivo. 1. Differential regulation of gp90MEL-14 (LECAM-1), Pgp-1, LFA-1, and VLA-4β during the differentiation of cytotoxic T lymphocytes induced by allografts. J Immunol 148:2348-2356.en_US
dc.identifier.citedreferenceMobley JL, Reynolds PJ, Shimizu Y. (1993). Regulatory mechanisms underlying T-cell integrin receptor function. Semin Immunol 5:227-236.en_US
dc.identifier.citedreferenceMobley JL, Rigby SM, Dailey MO (1994). Regulation of adhesion molecule expression by CD8 T-cells in vivo: 11. Expression of L-selectin (CD62L) by memory cytolytic T-cells responding to minor histocompatibility antigens. J Immunol 153:5443-5452.en_US
dc.identifier.citedreferenceMorino N., Mimura T., Hamasaki K., Tobe K., Ueki K., Kikuchi K., et al. (1995). Matrix/integrin interaction activates the mitogen-activated protein kinase, p44erk-1 and p42erk-2. J Biol Chem 270:269-273.en_US
dc.identifier.citedreferenceMosher DF (1990). Physiology of thrombospondin. Ann Rev Med 41:85-97.en_US
dc.identifier.citedreferenceMoulder K., Roberts K., Shevach EM, Coligan JE (1991). The mouse vitronectin receptor is a T-cell activation antigen. J Exp Med 173:343-347.en_US
dc.identifier.citedreferenceMoy P., Lobb R., Tizard R., Olson D., Hession C. (1993). Cloning of an inflammation-specific phosphatidyl inositol-linked form of murine vascular cell adhesion molecule-1. J Biol Chem 268:8835-8841.en_US
dc.identifier.citedreferenceNojima Y., Rothstein DM, Sugita K., Schlossman SF, Morimoto C. (1992). Ligation of VLA-4 on T-cells stimulates tyrosine phosphorylation of a 105-k D protein. J Exp Med 175:1045-1053.en_US
dc.identifier.citedreferenceNojima Y., Tachibana K., Sato T., Schlossman SF, Morimoto C. (1995). Focal adhesion kinase (pp125FAK) is tyrosine phosphorylated after engagement of α4β1 and α5β1 integrins on human T-lymphoblastic cells. Cell Immunol 161 :8-13.en_US
dc.identifier.citedreferenceOppenheimer-Marks N., Lipsky PE (1995). Leukocyte adhesion and leukocyte traffic in rheumatoid arthritis. In: Mechanisms and models in rheumatoid arthritis. Henderson B, Edwards JCW, Pettipher ER, editors. London: Academic Press Ltd., pp. 221-239.en_US
dc.identifier.citedreferenceOsborn L., Hession C., Tizard R., Vassallo C., Luhowskyj S., Chi-Rosso G., et al. (1989). Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:1203-1211.en_US
dc.identifier.citedreferenceOstergaard HL, Ma EA (1995). Fibronectin induces phosphorylation of a 120-k Da protein and synergizes with the T-cell receptor to activate cytotoxic T-cell clones. Eur J Immunol 25:252-256.en_US
dc.identifier.citedreferencePardi R., Inverardi L., Bender JR (1992). Regulatory mechanisms in leukocyte adhesion: flexible receptors for sophisticated travelers. Immunol Today 13:224-230.en_US
dc.identifier.citedreferenceParker CM, Cepek KL, Russell GJ, Shaw SK, Posnett DN, Schwarting R., et al. (1992). A family of β7 integrins on human mucosal lymphocytes. Proc Natl Acad Sci USA 89:1924-1928.en_US
dc.identifier.citedreferencePatel DJ, Gumbiner BM (1995). Zipping together a cell adhesion interface. Nature 374:306-307.en_US
dc.identifier.citedreferencePiali L., Hammel P., Uherek C., Bachmann F., Gisler RH, Dunon D., et al. (1995). CD31/PECAM-1 is a ligand for αvβ3 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol 130:451-460.en_US
dc.identifier.citedreferencePicker LJ (1994). Control of lymphocyte homing. Curr Opin Immunol 6:394-406.en_US
dc.identifier.citedreferencePicker LJ, Butcher EC (1992). Physiological and molecular mechanisms of lymphocyte homing. Ann Rev Immunol 10:561-591.en_US
dc.identifier.citedreferencePicker LJ, Nakache M., Butcher EC (1989). Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types. J Cell Biol 109:927-937.en_US
dc.identifier.citedreferencePicker LJ, Warnock RA, Burns AR, Doerschuk CM, Berg EL, Butcher EC (1991). The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 66:921-933.en_US
dc.identifier.citedreferencePicker LJ, Treer JR, Ferguson-Darnell B., Collins PA, Buck D., Terstappen Lwmm (1993a). Control of lymphocyte recirculation in man: I. Differential regulation of the peripheral lymph node homing receptor L-selectin on T-cells during the virgin to memory cell transition. J Immunol 150:1105-1121.en_US
dc.identifier.citedreferencePicker LJ, Treer JR, Ferguson-Darnell B., Collins PA, Bergstresser PR, Terstappen Lwmm (1993b). Control of lymphocyte recirculation in man: II. Differential regulation of the cutaneous lymphocyte-associated antigen, a tissue-selective homing receptor for skin-homing T-cells. J Immunol 150:1122-1136.en_US
dc.identifier.citedreferencePietschmann P., Cush JJ, Lipsky PE, Oppenheimer-Marks N. (1992). Identification of subsets of human T-cells capable of enhanced transendothelial migration. J Immunol 149:1170-1178.en_US
dc.identifier.citedreferencePitzalis C., Kingsley G., Panayi G. (1994). Adhesion molecules in rheumatoid arthritis: role in the pathogenesis and prospects for therapy. Ann Rheum Dis 53:287-288.en_US
dc.identifier.citedreferencePober IS, Bevilacqua MP, Mendrick DL, Lapierre LA, Fiers W., Gimbrone MA (1986). Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J Immunol 136:1680-1687.en_US
dc.identifier.citedreferencePrice TH, Ochs D., Gershoni-Baruch RG (1994). In vivo neutrophil and lymphocyte function studies in a patient with leukocyte adhesion deficiency type II. Blood 84:1635-1639.en_US
dc.identifier.citedreferenceRabinowich H., Lin W., Manciulea M., Herberman RB, Whiteside TL (1995). Induction of protein tyrosine phosphorylation in human natural killer cells by triggering via α4β1 or α5β1 integrins. Blood 85:1858-1864.en_US
dc.identifier.citedreferenceRichardson A., Parsons IT (1995). Signal transduction through integrins: a central role for focal adhesion kinase Bio Essays 17:229-236.en_US
dc.identifier.citedreferenceRodriguez RM, Pitzalis C., Kingsley GH, Henderson E., Humphries MJ, Panayi GS (1992). T lymphocyte adhesion to fibronectin (FN): a possible mechanism for T-cell accumulation in the rheumatoid joint. Clin Exp Immunol 89:439-445.en_US
dc.identifier.citedreferenceRomanic AM, Madri JA (1994). The induction of 72-k D gelatinase in T-cells upon adhesion to endothelial cells is VCAM-1 dependent. J Cell Biol 125:1165-1178.en_US
dc.identifier.citedreferenceRuegg CR Chiquet-Ehrismann R., Alkan SS (1989). Tenascin an extracellular matrix protein, exerts immunomodulatory activities. Proc Natl Acad Sci USA 86:7437-744).en_US
dc.identifier.citedreferenceRybski JA, Lause DB, Reese AC (1989). Effect of fibronectin on antigen-induced lymphoproliferation and antibody synthesis in rats. J Leukoc Biol 45:35-45.en_US
dc.identifier.citedreferenceSalomon DR, Mojcik CF, Chang AC, Wadsworth S., Adams DH, Coligan JE, et al. (1994). Constitutive activation of integrin α4β1 defines a unique stage of human thymocyte development. J Exp Med 179:1573-1584.en_US
dc.identifier.citedreferenceSaltini C. Hemler ME, Crystal RG (1988). T lymphocytes compartmentalized on the epithelial surface of the lower respiratory tract express the very late activation antigen complex VLA-1. Clin Immunol Immunopathol 46:221-233.en_US
dc.identifier.citedreferenceSawada M., Nagamine J., Takeda K., Utsumi K., Kosugi A., Tatsumi Y., et al. (1992). Expression of VLA-4 on thymocytes : maturation stage-associated transition and its correlation with their capacity to adhere to thymic stromal cells. J Immunol 149:3517-3524.en_US
dc.identifier.citedreferenceSchaller MD Parsons IT (1994). Focal adhesion kinase and associated proteins. Curr Opin Cell Biol 6 :705-710.en_US
dc.identifier.citedreferenceSchleiffenbaum B., Spertini O., Tedder TF (1992). Soluble L-selectin is present in human plasma at high levels and retains functional activity. J Cell Biol 119:229-238.en_US
dc.identifier.citedreferenceSeftor REB, Seftor EA, Gehlsen KR, Stetler-Stevenson WG, Brown PD, Ruoslahti E., et al. (1992). Role of the αvβ3 integrin in human melanoma cell invasion. Proc Natl Acad Sci USA 89:1557-1561.en_US
dc.identifier.citedreferenceSeltzer JL, Lee A.-Y., Akers KT, Sudbeck B., Southon EA, Wayner EA, et al. (1994). Activation of 72-k Da type IV collagenase/gelatinase by normal fibroblasts in collagen lattices is mediated by integrin receptors but is not related to lattice contraction. Exp Cell Res 213:365-374.en_US
dc.identifier.citedreferenceShapiro L., Fannon AM, Kwong PD, Thompson A., Lehman MS, Grubel G., et al. (1995). Structural basis of cell-cell adhesion by cadherins. Nature 374:327-337.en_US
dc.identifier.citedreferenceShimizu Y., Shaw S. (1991). Lymphocyte interactions with extracellular matrix. FASEB J 5:2292-2299.en_US
dc.identifier.citedreferenceShimizu Y., Shaw S. (1993). Mucins in the mainstream. Nature 366:630-631.en_US
dc.identifier.citedreferenceShimizu Y., van Seventer GA, Horgan KJ, Shaw S. (1990a). Roles of adhesion molecules in T-cell recognition: fundamental similarities between four integrins on resting human T-cells (LFA-1, VLA-4, VLA-5, VLA-6) in expression, binding, and costimulation. Immunol Rev 114:109-143.en_US
dc.identifier.citedreferenceShimizu Y., van Seventer GA, Horgan KJ, Shaw S. (1990b). Costimulation of proliferative responses of resting CD4+ T-cells by the interaction of VLA-4 and VLA-5 with fibronectin or VLA-6 with laminin J Immunol 145:59-67.en_US
dc.identifier.citedreferenceShimizu Y., van Seventer GA, Horgan KJ, Shaw S. (1990c). Regulated expression and binding of three VLA (β1) integrin receptors on T-cells. Nature 345:250-253.en_US
dc.identifier.citedreferenceShimizu Y., Shaw S., Graber N., Gopal TV, Horgan KJ, van Seventer GA, et al. (1991). Activation-independent binding of human memory T-cells to adhesion molecule ELAM-1. Nature 349:799-802.en_US
dc.identifier.citedreferenceSimon SI, Burns AR, Taylor AD, Gopalan PK, Lynam EB, Sklar LA, et al. (1995). L-selectin (CD62L) cross-linking signals neutrophil adhesive functions via the Mac-1 (CD11b/CD18) β2-integrin. J Immunol 155:1502-1514.en_US
dc.identifier.citedreferenceSmith CW, Kishimoto TK, Abbass O., Hughes B., Rothlein R., Mc Intire LV, et al. (1991). Chemotactic factors regulate lectin adhesion molecule I (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro. J Clin Invest 87:609-618.en_US
dc.identifier.citedreferenceSpertini O., Kansas GS, Munro JM, Griffin JD, Tedder TF (1991a). Regulation of leukocyte migration by activation of the leukocyte adhesion molecule-1 (LAM-1) selectin. Nature 349:691-694.en_US
dc.identifier.citedreferenceSpertini O., Luscinskas FW, Kansas GS, Munro JM, Griffin JD, Gimbrone MA, et al. (1991b). Leukocyte adhesion molecule-1 (LAM-1) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J Immunol 147:2565-2573.en_US
dc.identifier.citedreferenceSprent J. (1994). T and B memory cells. Cell 76:315-322.en_US
dc.identifier.citedreferenceSpringer TA (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301-314.en_US
dc.identifier.citedreferenceStaunton DE, Dustin ML, Springer TA (1989). Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339:61-64.en_US
dc.identifier.citedreferenceSteinman L. (1995). Escape from "Horror Autotoxicus": pathogenesis and treatment of autoimmune disease. Cell 80 :7-10.en_US
dc.identifier.citedreferenceSteinman RM (1991). The dendritic cell system and its role in immunogenicity. Ann Rev Immunol 9:271-296.en_US
dc.identifier.citedreferenceStreeter PR, Rouse BTN, Butcher EC (1988). Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J Cell Biol 107:1853-1862.en_US
dc.identifier.citedreferenceSturmhofel K., Brando C., Martinon F., Shevach EM, Coligan JE (1995). Antigen-independent, integrin-mediated T-cell activation. J Immunol 154:2104-2111.en_US
dc.identifier.citedreferenceSzekanecz Z., Humphries MJ, Ager A. (1992). Lymphocyte adhesion to high endothelium is mediated by two β1 integrin receptors for fibronectin, α4β1 and α5β1. J Cell Sci 101:885-894.en_US
dc.identifier.citedreferenceTanaka Y., Albelda SM, Horgan KJ, van Seventer GA, Shimizu Y., Newman W., et al. (1992). CD31 expressed on distinctive T-cell subsets is a preferential amplifier of β1 integrin-mediated adhesion. J Exp Med 176:245-253.en_US
dc.identifier.citedreferenceTanaka Y., Adams DH, Hubscher S., Hirano H., Siebenlist U., Shaw S. (1993a). T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1β. Nature 361:79-82.en_US
dc.identifier.citedreferenceTanaka Y., Adams DH, Shaw S. (1993b). Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes. Immunol Today 14:111-115.en_US
dc.identifier.citedreferenceTedder TF, Steeber DA, Chen A., Engel P. (1995). The selectins: vascular adhesion molecules. FASEB J 9:866-873.en_US
dc.identifier.citedreferenceTicchioni M., Deckert M., Bernard G., Calandra D., Breittmeyer J-P., Imbert V., et al. (1995). Comitogenic effects of very late activation antigens on CD3-stimulated human thymocytes: involvement of various tyrosine kinase pathways. J Immunol 154:1207-1215.en_US
dc.identifier.citedreferenceTripp RA, Hou S., Doherty PC (1995). Temporal loss of the activated L-selectin-low phenotype for virus-specific CD8+ memory T-cells. J Immunol 154:5870-5875.en_US
dc.identifier.citedreferenceUshiyama S., Laue TM, Moore KL, Erickson HP, Mc Ever RP (1993). Structural and functional characterization of monomeric soluble P-selectin and comparison with membrane P-selectin. J Biol Chem 268:15229-15237.en_US
dc.identifier.citedreferenceUtsumi K., Sawada M., Narumiya S., Nagamine J., Sakata T., lwagami S., et al. (1991). Adhesion of immature thymocytes to thymic stromal cells through fibronectin molecules and its significance for the induction of thymocyte differentiation. Proc Natl Acad Sci USA 88:5685-5689.en_US
dc.identifier.citedreferencevan Seventer GA, Shimizu Y., Shaw S. (1991). Roles of multiple accessory molecules in T-cell activation. Curr Opin Immunol 3:294-303.en_US
dc.identifier.citedreferenceVennegoor Cjgm, van de Wiel-van Kemenade E., Huijbens RJF, Sanchez-Madrid F., Melief CJM, Figdor CG (1992). Role of LFA-1 and VLA-4 in the adhesion of cloned normal and LFA-1 (CD11/CD18)-deficient T-cells to cultured endothelial cells: indication for a new adhesion pathway. J Immunol 148 :1093-1101.en_US
dc.identifier.citedreferenceVerhagen AM, Kimpton WG, Nash AD (1995). Recirculation of cytolytic T-cells from a single lymph node during an immune response to allogeneic leukocytes. Transplantation 59:432-435.en_US
dc.identifier.citedreferenceVlodavsky I., Eldor A., Haimovitz-Friedman A., Matzner Y., Ishai-Michaeli R., Lider O., et al. (1992). Expression of heparanase by platelets and circulating cells of the immune system: Possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112-127.en_US
dc.identifier.citedreferenceWakita H., Takigawa M. (1994). E-selectin and vascular cell adhesion molecule-1 are critical for initial trafficking of helper-inducer/memory T-cells in psoriatic plaques. Arch Dermatol 130:457-463.en_US
dc.identifier.citedreferenceWashington EA, Keterelos M., Cahill RNP, Kimpton WG (1994). Differences in tissue-specific homing of αβ and αβ T-cells to gut and peripheral lymph nodes. Int Immunol 6:1891-1897.en_US
dc.identifier.citedreferenceWilder RL (1993). Rheumatoid arthritis. A. Epidemiology, pathology, and pathogenesis. In: Primer on the rheumatic diseases. Shumacher HR), editor. Atlanta: The Arthritis Foundation, pp. 86-89.en_US
dc.identifier.citedreferenceWitherden DA, Abernathy NJ, Kimpton WJ, Cahill RNP (1994). Changes in thymic export of L-selectin+ αβ and αβ T-cells during fetal and postnatal development. Eur I Immunol 24:1234-1239.en_US
dc.identifier.citedreferenceWoessner JF (1991). Matrix metalloproteinases and their inhibitor in connective tissue remodeling. FASEB J 5:2145-2154.en_US
dc.identifier.citedreferenceYabkowitz R., Dixit VM, Guo N., Roberts DD, Shimizu Y. (1993). Activated T-cell adhesion to thrombospondin is mediated by the α4β1 (VLA-4) and α5β1 (VLA-5) integrins. I Immunol 151:149-158.en_US
dc.identifier.citedreferenceYamada A., Nikaido T., Nojima Y., Schlossman SF, Morimoto C. (1991). Activation of human CD4 T lymphocytes. Interaction of fibronectin with VLA-5 receptor on CD4 cells induces the AP-1 transcription factor. J Immunol 146:53-56.en_US
dc.identifier.citedreferenceYednock TA, Cannon C., Fritz LC, Sanchez-Madrid F., Steinman L., Karin N. (1992). Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356:63-66.en_US
dc.identifier.citedreferenceYoung AJ, Hay IB, Mackay CR (1993). Lymphocyte recirculation and life span in vivo. Curr Top Microbiol Immunol 184:161-173.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.