Show simple item record

Planning and Control of Robotic Juggling and Catching Tasks

dc.contributor.authorBuehler, M.en_US
dc.contributor.authorKoditschek, D. E.en_US
dc.contributor.authorKindlmann, P. J.en_US
dc.date.accessioned2010-04-13T19:50:16Z
dc.date.available2010-04-13T19:50:16Z
dc.date.issued1994en_US
dc.identifier.citationBuehler, M.; Koditschek, D.E.; Kindlmann, P.J. (1994). "Planning and Control of Robotic Juggling and Catching Tasks." The International Journal of Robotics Research 13(2): 101-118. <http://hdl.handle.net/2027.42/67815>en_US
dc.identifier.issn0278-3649en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/67815
dc.description.abstractA new class of control algorithms—the "mirror algorithms"— gives rise to experimentally observed juggling and catching behavior in a planar robotic mechanism. The simplest of these algorithms (on which all the others are founded) is provably correct with respect to a simplified model of the robot and its environment. This article briefly reviews the physical setup and underlying mathematical theory. It discusses two significant extensions of the fundamental algorithm to juggling two objects and catching. We provide data from successful empirical verifi cations of these control strategies and briefly speculate on the larger implications for the field of robotics.en_US
dc.format.extent3108 bytes
dc.format.extent1566429 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherSage Publicationsen_US
dc.titlePlanning and Control of Robotic Juggling and Catching Tasksen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumElectrical Engineering and Computer Science Department University of Michigan Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherCenter for Intelligent Machines Mechanical Engineering Department Mc Gill University Montréal, Québec, Canada H3A 2A7en_US
dc.contributor.affiliationotherCenter for Systems Science Department of Electrical Engineering Yale University New Haven, Connecticut 06520-1968en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/67815/2/10.1177_027836499401300201.pdf
dc.identifier.doi10.1177/027836499401300201en_US
dc.identifier.sourceThe International Journal of Robotics Researchen_US
dc.identifier.citedreferenceAboaf, E.W., Drucker, S.M., and Atkeson, C.G. 1989. Task-level robot learning: Juggling a tennis ball more accurately. Proc. IEEE Int. Conf. Robotics and Automation, Scottsdale, AZ, pp. 1290-1295.en_US
dc.identifier.citedreferenceAndersson, R.L. 1989 Understanding and applying a robot ping-pong player's expert controller. Proc. IEEE Int. Conf. Robotics and Automation, Scottsdale, AZ, pp. 1284-1289.en_US
dc.identifier.citedreferenceBuehler, M. 1990. Robotic Tasks With Intermittent Dynamics. Ph.D. thesis, Yale University. UMI (Ann Arbor, MI) Publ. no. 9035329.en_US
dc.identifier.citedreferenceBuehler, M., and Koditschek, D.E. 1990. From stable to chaotic juggling: Theory, simulation, and experiments. Proc. IEEE Int. Conf. Robotics and Automation, Cincinnati, OH, pp. 1976-1981.en_US
dc.identifier.citedreferenceBuehler, M., Koditschek, D.E., and Kindlmann, P.J. 1988. A one degree of freedom juggler in a two degree of freedom environment. Proc. IEEE/RSJ Conf. Intelligent Systems and Robots, Tokyo, Japan, pp. 91-97.en_US
dc.identifier.citedreferenceBuehler, M., Koditschek, D.E., and Kindlmann, P.J. 1989. A simple juggling robot: Theory and experimentation. In Hayward, V., and Khatib, O. (eds.): Experimental Robotics I. New York: Springer-Verlag, pp. 35-73.en_US
dc.identifier.citedreferenceBuehler, M., Koditschek, D.E., and Kindlmann, P.J. 1990. A family of robot control strategies for intermittent dynamical environments. IEEE Control Systems Magazine 10(2):16-22.en_US
dc.identifier.citedreferenceBuehler, M., Whitcomb, L.L., Levin, F., and Koditschek, D.E. 1989. A distributed message passing computational and I/O engine for real-time motion control. American Control Conference, Pittsburgh, PA, pp. 478-483.en_US
dc.identifier.citedreferenceErdmann, M., and Mason, M.T. 1986. An exploration of sensorless manipulation. Proc. IEEE Int. Conf. Robotics and Automation. San Francisco, CA, pp. 1569-1574.en_US
dc.identifier.citedreferenceKoditschek, D.E. 1986. Automatic planning and control of robot natural motion via feedback. In Narendra, K. S. (ed.): Adaptive and Learning Systems: Theory and Applications. New York: Plenum, pp. 389-402.en_US
dc.identifier.citedreferenceKoditschek, D.E. 1987. Exact robot navigation by means of potential functions: Some topological considerations. Proc. IEEE Int. Conf. Robotics and Automation. Raleigh, NC, pp. 1-6.en_US
dc.identifier.citedreferenceKoditschek, D.E., and Buehler, M. 1991. Analysis of a simplified hopping robot. Int. J. Robot. Res. 10(6):587-605.en_US
dc.identifier.citedreferenceKoditschek, D.E., and Rimon, E. 1990. Robot navigation functions on manifolds with boundary. Adv. Applied Mathematics 11:412-442.en_US
dc.identifier.citedreferenceMason, M.T. 1986. Mechanics and planning of manipulator pushing operations. Int. J. Robot. Res. 5(3):53-71.en_US
dc.identifier.citedreferenceMc Geer, T. 1989. Passive bipedal running. Technical report IS-TR-89-02. Centre for Systems Science, Simon Fraser University.en_US
dc.identifier.citedreferenceMc Geer, T. 1990. Passive dynamic walking. Int. J. Robot. Res. 9(2):62-82.en_US
dc.identifier.citedreferenceRaibert, M.H. 1986. Legged Robots That Balance. Cambridge, MA: MIT Press.en_US
dc.identifier.citedreferenceRimon, E., and Koditschek, D.E. 1991. The construction of analytic diffeomorphisms for exact robot navigation on star worlds. Trans. Am. Math. Soc. 327(1):71-115.en_US
dc.identifier.citedreferenceTaylor, R.H., Mason, M.T., and Goldberg, K.Y. 1987. Sensor-based manipulation planning as a game with nature. In Int. Symp. Robotics Research. Cambridge, MA: MIT Press.en_US
dc.identifier.citedreferenceWang, Y. 1989a. Dynamic Analysis and Simulation of Mechanical Systems with Intermittent Constraints. Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, PA.en_US
dc.identifier.citedreferenceWang, Y. 1989b. Mechanics and planning of collisions in robotic manipulation. Proc. IEEE Int. Conf. Robotics and Automation, Scottsdale, AZ, pp. 478-483.en_US
dc.identifier.citedreferenceWang, Y., and Mason, M.T. 1987. Modeling impact dynamics for robotics operations. Proc. IEEE Int. Conf. Robotics and Automation, San Francisco, CA, pp. 678-685.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.