Show simple item record

Sequential Composition of Dynamically Dexterous Robot Behaviors

dc.contributor.authorBurridge, R.en_US
dc.contributor.authorRizzi, A.en_US
dc.contributor.authorKoditschek, D. E.en_US
dc.date.accessioned2010-04-13T20:00:29Z
dc.date.available2010-04-13T20:00:29Z
dc.date.issued1999en_US
dc.identifier.citationBurridge, R.; Rizzi, A.; Koditschek, D. (1999). "Sequential Composition of Dynamically Dexterous Robot Behaviors." The International Journal of Robotics Research 18(6): 534-555. <http://hdl.handle.net/2027.42/67990>en_US
dc.identifier.issn0278-3649en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/67990
dc.description.abstractWe report on our efforts to develop a sequential robot controller-composition technique in the context of dexterous “batting” maneuvers. A robot with a flat paddle is required to strike repeatedly at a thrown ball until the ball is brought to rest on the paddle at a specified location. The robot’s reachable workspace is blocked by an obstacle that disconnects the free space formed when the ball and paddle remain in contact, forcing the machine to “let go” for a time to bring the ball to the desired state. The controller compositions we create guarantee that a ball introduced in the “safe workspace” remains there and is ultimately brought to the goal. We report on experimental results from an implementation of these formal composition methods, and present descriptive statistics characterizing the experiments.en_US
dc.format.extent3108 bytes
dc.format.extent292591 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherSage Publicationsen_US
dc.subject.otherHybrid Controlen_US
dc.subject.otherController Compositionen_US
dc.subject.otherDynamical Dexterityen_US
dc.subject.otherSwitching Controlen_US
dc.subject.otherReactive Schedulingen_US
dc.subject.otherBackchainingen_US
dc.subject.otherObstacle Avoidanceen_US
dc.titleSequential Composition of Dynamically Dexterous Robot Behaviorsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumArtificial Intelligence Laboratory and Controls Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2110, USA kod@eecs.umich.eduen_US
dc.contributor.affiliationotherTexas Robotics and Automation Center, Metrica, Inc., Houston, Texas 77058, USA burridge@mickey.jsc.nasa.goven_US
dc.contributor.affiliationotherThe Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3891, USA arizzi+@ri.cmu.eduen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/67990/2/10.1177_02783649922066385.pdf
dc.identifier.doi10.1177/02783649922066385en_US
dc.identifier.sourceThe International Journal of Robotics Researchen_US
dc.identifier.citedreferenceAbraham, R., and Marsden, J. E.1978. Foundations of Mechanics. Reading, MA: Benjamin/Cummings.en_US
dc.identifier.citedreferenceBrockett, R. W. 1983. Asymptotic stability and feedback stabilization. In Brockett, R. W., Millman, R. S., and Sussman, H. J. (eds.) Differential Geometric Control Theory. BirkhÄuser, pp. 181–191.en_US
dc.identifier.citedreferenceBuehler, M., Koditschek, D. E., and Kindlmann, P. J.1990a. A simple juggling robot: Theory and experimentation. In Hayward, V., and Khatib, O. (eds.) Experimental Robotics I. New York: Springer-Verlag, pp. 35–73.en_US
dc.identifier.citedreferenceBuehler, M., Koditschek, D. E., and Kindlmann, P. J.1990b. A family of robot control strategies for intermittent dynamical environments. IEEE Control Sys. Mag.10(2): 16–22.en_US
dc.identifier.citedreferenceBuehler, M., Koditschek, D. E., and Kindlmann, P. J.1994. Planning and control of a juggling robot. Intl. J. Robot. Res.13(2): 101–118.en_US
dc.identifier.citedreferenceBurridge, R. R. 1996. Sequential composition of dynamically dexterous robot behaviors. Ph D thesis, Department of Electrical Engineering and Computer Science, University of Michigan.en_US
dc.identifier.citedreferenceBurridge, R. R., Rizzi, A. A., and Koditschek, D. E. 1995. Toward a dynamical pick and place. Proc. of the 1995 Intl. Conf. on Intell. Robots and Sys., vol. 2. Los Alamitos, CA: IEEE Computer Society Press, pp. 292–297.en_US
dc.identifier.citedreferenceBurridge, R. R., Rizzi, A. A., and Koditschek, D. E.1997. Obstacle avoidance in intermittent dynamical environments. In Khatib, O., and Salisbury, J. K. (eds.) Experimental Robotics IV. New York: Springer-Verlag, pp. 43–48.en_US
dc.identifier.citedreferenceErdmann, M. A. 1984. On motion planning with uncertainty. MS thesis and Technical report AI-TR-810, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.en_US
dc.identifier.citedreferenceGuckenheimer, J., and Holmes, P.1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag.en_US
dc.identifier.citedreferenceHirsch, M. W. 1976. Differential Topology. New York: Springer-Verlag.en_US
dc.identifier.citedreferenceIsh-Shalom, J. 1984. The CS language concept: A new approach to robot motion design. Proc. of the 1984 IEEE Conf. on Decision and Control. Los Alamitos, CA: IEEE, pp. 760–767.en_US
dc.identifier.citedreferenceKoditschek, D. E. 1992. Task encoding: Toward a scientific paradigm for robot planning and control. J. Robot. Autonomous Sys.9: 5–39.en_US
dc.identifier.citedreferenceKoditschek, D. E., and Buehler, M.1991. Analysis of a simplified hopping robot. Intl. J. Robot. Res.10(6): 587–605.en_US
dc.identifier.citedreferenceLatombe, J. 1991. Robot Motion Planning. Boston, MA: Kluwer.en_US
dc.identifier.citedreferenceLozano-PÉrez, T., Jones, J. L., Mazer, E., and O’Donnell, P. A. 1987. Handey: A robot system that recognizes, plans, and manipulates. Proc. of the 1987 IEEE Intl. Conf. on Robot. and Automat.Los Alamitos, CA: IEEE, pp. 843–849.en_US
dc.identifier.citedreferenceLozano-PÉrez, T., Mason, M. T., and Taylor, R. H.1984. Automatic synthesis of fine-motion strategies for robots. Intl. J. Robot. Res.3(1): 3–23.en_US
dc.identifier.citedreferenceLyons, D. M. 1993. Representing and analyzing action plans as networks of concurrent processes. IEEE Trans. Robot. Automat.9(3): 241–256.en_US
dc.identifier.citedreferenceLyons, D. M., and Hendriks, A. J. 1994. Planning by adaption: Experimental results. Proc. of the 1994 IEEE Intl. Conf. on Robot. and Automat.Washington, DC: IEEE, pp. 855–860.en_US
dc.identifier.citedreferenceMason, M. T. 1985. The mechanics of manipulation. Proc. of the 1985 IEEE Intl. Conf. on Robot. and Automat.Los Alamitos, CA: IEEE, pp. 544–548.en_US
dc.identifier.citedreferenceRamadge, P. J., and Wonham, W. M.1987. Supervisory control of a class of discrete event processes. SIAM J. Control Optimiz.25(1): 206–230.en_US
dc.identifier.citedreferenceRimon, E., and Koditschek, D. E.1992. Exact robot navigation using artificial potential fields. IEEE Trans. Robot. Automat.8(5): 501–518.en_US
dc.identifier.citedreferenceRizzi, A. A. 1994. Dexterous robot manipulation. Ph D thesis, Yale University.en_US
dc.identifier.citedreferenceRizzi, A. A., and Koditschek, D. E. 1993. Further progress in robot juggling: The spatial two-juggle. Proc. of the 1993 IEEE Intl. Conf. on Robot. and Automat.Los Alamitos, CA: IEEE, pp. 919–924.en_US
dc.identifier.citedreferenceRizzi, A. A., and Koditschek, D. E. 1994. Further progress in robot juggling: Solvable mirror laws. Proc. of the 1994 IEEE Intl. Conf. on Robot. and Automat.Washington, DC: IEEE, pp. 2935–2940.en_US
dc.identifier.citedreferenceRizzi, A. A., and Koditschek, D. E.1996. An active visual estimator for dexterous manipulation. IEEE Trans. Roboti. and Automat.12(5).en_US
dc.identifier.citedreferenceRizzi, A. A., Whitcomb, L. L., and Koditschek, D. E.1992. Distributed real-time control of a spatial robot juggler. IEEE Computer25(5).en_US
dc.identifier.citedreferenceTung, C. P., and Kak, A. C. 1994. Integrating sensing, task planning, and execution. Proc. of the 1994 IEEE Intl. Conf. on Robot. and Automat.Washington, DC: IEEE, pp. 2030–2037.en_US
dc.identifier.citedreferenceWhitcomb, L. L. 1992. Advances in architectures and algorithms for high-performance robot control. Ph D thesis, Yale University.en_US
dc.identifier.citedreferenceWhitcomb, L. L., Rizzi, A. A., and Koditschek, D. E.1993. Comparative experiments with a new adaptive controller for robot arms. IEEE Trans. Robot. Automat.9(1): 59–70.en_US
dc.identifier.citedreferenceWhitney, D. E. 1977. Force-feedback control of manipulator fine motions. ASME J. Dyn. Sys.98: 91–97.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.