Show simple item record

Chemorheological Relaxation, Residual Stress, and Permanent Set Arising in Radial Deformation of Elastomeric Hollow Spheres

dc.contributor.authorHuntley, Hugh E.en_US
dc.contributor.authorWineman, Alan S.en_US
dc.contributor.authorRajagopal, Kumbakonam R.en_US
dc.date.accessioned2010-04-14T13:39:18Z
dc.date.available2010-04-14T13:39:18Z
dc.date.issued1996en_US
dc.identifier.citationHuntley, Hugh; Wineman, Alan; Rajagopal, K. (1996). "Chemorheological Relaxation, Residual Stress, and Permanent Set Arising in Radial Deformation of Elastomeric Hollow Spheres." Mathematics and Mechanics of Solids 1(3): 267-299. <http://hdl.handle.net/2027.42/68444>en_US
dc.identifier.issn1081-2865en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/68444
dc.description.abstractRecently, a constitutive theory for rubber-like materials has been developed by which stress arises from different micromechanisms at different levels of deformation. For small deformations, the stress is given by the usual theory of rubber elasticity. As the deformation increases, there is scission of some junctions of the macromolecular microstructure. Junctions then reform to generate a new microstructure. The constitutive equation allows for continuous scission of the original junctions and formation of new ones as deformation increases. The macromolecular scission causes stress reduction, termed chemorheological relaxation. The new macromolecular structure results in permanent set on release of external load. The present work considers a hollow sphere composed of such a material, also assumed to be incom-pressible and isotropic, which undergoes axisymmetric deformation under radial traction. There develops an outer zone of material with the original microstructure and an inner zone of material having undergone macromolecular scission, separated by a spherical interface whose radius increases with the deformation. The stress distribution, radial load-expansion response, residual stress distribution, and permanent set on release of traction are determined. It is found that a residual state of high compressive stress can arise in a thin layer of material at the inner boundary of the sphere.en_US
dc.format.extent3108 bytes
dc.format.extent2454516 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherSage Publicationsen_US
dc.titleChemorheological Relaxation, Residual Stress, and Permanent Set Arising in Radial Deformation of Elastomeric Hollow Spheresen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128en_US
dc.contributor.affiliationumDepartment of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationotherDepartment of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA 15261en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/68444/2/10.1177_108128659600100301.pdf
dc.identifier.doi10.1177/108128659600100301en_US
dc.identifier.sourceMathematics and Mechanics of Solidsen_US
dc.identifier.citedreference[1] Rajagopal, K. R. and Wineman, A. S.: A constitutive equation for nonlinear solids which undergo deformation induced microstructural changes. Int. J. Plast., 8, 385-395 (1992).en_US
dc.identifier.citedreference[2] Tobolsky, A. V.: Properties and Structure of Polymers, John Wiley, New York, 1960.en_US
dc.identifier.citedreference[3] Wineman, A. S. and Rajagopal, K. R.: On a constitutive theory for materials undergoing microstructural changes. Arch. Mech., 42, 1, 53-75 (1990).en_US
dc.identifier.citedreference[4] Huntley, H. E.: Applications of a constitutive equation for microstructural change in polymers, Ph.D. dissertation, The University of Michigan, 1992.en_US
dc.identifier.citedreference[5] Wineman, A. S. and Huntley, H. E.: Numerical simulation of the effect of damage induced softening on the inflation of a circular rubber membrane. Int. J. Solids Structures, 31, 23, 3295-3313 (1994).en_US
dc.identifier.citedreference[6] Huntley, H. E., Wineman, A. S., and Rajagopal, K. R.: Load maximum behavior in the inflation of hollow spheres of incompressible material with strain-dependent damage, unpublished manuscript, 1995.en_US
dc.identifier.citedreference[7] Rajagopal, K. R. and Srinivasa, A. R.: On the inelastic behavior of solids, part I: Twinning. Int. J. Plast., 11, 653-678 (1995a).en_US
dc.identifier.citedreference[8] Rajagopal, K. R. and Srinivasa, A. R.: Inelastic behavior of materials, part II: Energetics associated with discontinuous twinning, unpublished manuscript, 1995b.en_US
dc.identifier.citedreference[9] Spencer, A.J.M.: Continuum Mechanics, Longman Mathematical Texts, New York, 1980.en_US
dc.identifier.citedreference[10] Rajagopal, K. R.: On constitutive relations and material modelling in continuum mechanics, Report #6, Institute for Applied and Computational Mechanics, The University of Pittsburgh, 1995.en_US
dc.identifier.citedreference[11] Carroll, M. M.: Controllable deformations of incompressible simple materials. Int. J. Eng. Sci., 5, 515-525 (1967).en_US
dc.identifier.citedreference[12] Carroll, M. M.: Pressure maximum behavior in inflation of incompressible elastic hollow spheres and cylinders. Quarterly of Applied Mathematics, 45, 1, 141-154 (1987).en_US
dc.identifier.citedreference[13] Hart-Smith, L. J.: Elasticity parameters for finite deformations of rubber-like materials. Zeitschriftftir Angewandte Mathematik und Physik, 17, 608-625 (1966).en_US
dc.identifier.citedreference[14] Beatty, M. F.: Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues-With Examples. Appl. Mech. Rev., 40, 12, 1699-1734 (1987).en_US
dc.identifier.citedreference[15] Sue, H.-J. and Yee, A. F.: Toughening mechanisms in a multi-phase alloy of nylon 6,6/polyphenylene oxide. J. Mat. Sci., 24, 1447-1457 (1989).en_US
dc.identifier.citedreference[16] Alexander, H.: A constitutive relation for rubber-like materials. Int. J. Eng. Sci., 6, 549-563 (1968).en_US
dc.identifier.citedreference[17] Treloar, L.R.G.: The Physics of Rubber Elasticity, 3rd ed., Oxford University Press, Oxford, UK, 1975.en_US
dc.identifier.citedreference[18] Horgan, C. O. and Pence, T. J.: Void nucleation in tensile dead-loading of a composite incompressible nonlinearly elastic sphere. J. Elast., 21, 61-82 (1989a).en_US
dc.identifier.citedreference[19] Horgan, C. O. and Pence, T. J.: Cavity formation at the center of a composite incompressible nonlinearly elastic sphere. Trans. ASME, 56, 302-308 (1989b).en_US
dc.identifier.citedreference[20] Chou-Wang, M.-S. and Horgan, C. O.: Void nucleation and growth for a class of incompressible nonlinearly elastic materials. Int. J. Solids Structures, 25, 11, 1239-1254 (1989).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.