Show simple item record

Decreasing Multicollinearity

dc.contributor.authorSmith, Kenten_US
dc.contributor.authorSasaki, M. S.en_US
dc.date.accessioned2010-04-14T13:43:25Z
dc.date.available2010-04-14T13:43:25Z
dc.date.issued1979en_US
dc.identifier.citationSmith, Kent; Sasaki, M.S. (1979). "Decreasing Multicollinearity." Sociological Methods & Research 8(1): 35-56. <http://hdl.handle.net/2027.42/68514>en_US
dc.identifier.issn0049-1241en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/68514
dc.description.abstractWhen the multicollinearity among the independent variables in a regression model is due to the high correlations of a multiplicative function with its constituent variables, the multicollinearity can be greatly reduced by centering these variables around minimizing constants before forming the multiplicative function. The values of these constants that minimize the multicollinearity are derived, and the conditions are identified under which centering the variables about their means will reduce the multicollinearity. Among the advantages of this procedure are that the mean square error remains at its minimum, that the coefficients for other variables in the model are unaffected by it, and that the OLS estimates for the original model can be calculated from those for the modified model. Thus, even when estimates of the original model are desired, the procedure can be used to reduce numerical error.en_US
dc.format.extent3108 bytes
dc.format.extent954653 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherSage Publicationsen_US
dc.titleDecreasing Multicollinearityen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelSociologyen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michiganen_US
dc.contributor.affiliationotherNorthwestern Universityen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/68514/2/10.1177_004912417900800102.pdf
dc.identifier.doi10.1177/004912417900800102en_US
dc.identifier.sourceSociological Methods & Researchen_US
dc.identifier.citedreferenceAllison, P.D. (1977) "Testing for interaction in multiple regression." Amer. J. of Sociology 83: 144-153.en_US
dc.identifier.citedreferenceAlthauser, R.P. (1971) "Multicollinearity and non-additive regression models," pp. 453-472 in H. M Blalock, Jr. (ed.) Causal Models in the Social Sciences. Chicago : Aldine-Atherton.en_US
dc.identifier.citedreferenceBlalock, H.M., Jr. (1963) "Correlated independent variables: the problem of multicollinearity." Social Forces 62: 233-238.en_US
dc.identifier.citedreferenceCutright, P. (1965) "Political structure, economic development, and national social security programs." Amer. J. of Sociology 70: 537-550.en_US
dc.identifier.citedreferenceDeegan, J., Jr. (1975) "The process of political development: an illustrative use of a strategy for regression in the presence of multicollinearity." Soc. Methods & Research 3: 384-415.en_US
dc.identifier.citedreferenceDraper, N.R. and H. Smith (1966) Applied Regression Analysis. New York: John Wiley.en_US
dc.identifier.citedreferenceGordon, R.A. (1968) "Issues in multiple regression." Amer. J: of Sociology 73: 592-616.en_US
dc.identifier.citedreferenceGuilkey, D.K. and J.L. Murphy (1975) "Directed ridge regression techniques in cases of multicollinearity." J. of the Amer. Statistical Assn. 70: 769-775.en_US
dc.identifier.citedreferenceHenry, N.W. (1976) "A note on ridge regression." Soc. Methods & Research 4: 495-500.en_US
dc.identifier.citedreferenceHoerl, A.E. (1962) "Application of ridge analysis to regression problems." Chemical Engineering Progress 58: 54-59.en_US
dc.identifier.citedreference--- and R.W. Kennard (1970a) "Ridge regression: biased estimation for nonorthogonal problems." Technometrics 12: 55-67.en_US
dc.identifier.citedreference--- (1970b) "Ridge regression: applications to nonorthogonal problems." Technometrics 12: 69-82.en_US
dc.identifier.citedreferenceJackman, R.W. (1975) Politics and Social Equality: A Comparative Analysis. New York: Wiley-Interscience.en_US
dc.identifier.citedreference——— (1974) "Political democracy and social equality: a comparative analysis." Amer. Soc. Rev. 39 (February): 20-45.en_US
dc.identifier.citedreferenceKasarda, J.D. and W-F. P. Shih (1977) "Optimal bias in ridge regression approaches to multicollinearity." Soc. Methods & Research 5: 461-470.en_US
dc.identifier.citedreferenceMarquardt, D.W. and R.D. Snee (1975) "Ridge regression in practice." Amer. Statistician 29 (February): 3-20.en_US
dc.identifier.citedreferenceMosteller, F. and J.W. Tukey (1977) Data Analysis and Regression: A Second Course in Statistics. Reading, MA: Addison-Wesley.en_US
dc.identifier.citedreferenceRockwell, R.C. (1975) "Assessment of multicollinearity: the Haitovsky test of the determinant." Soc. Methods & Research 3 (February): 308-320.en_US
dc.identifier.citedreferenceSouthwood, K.E. (1978) "Substantive theory and statistical interaction: five models." Amer. J. of Sociology 83: 1154-1203.en_US
dc.identifier.citedreferenceTaylor, C.L. and M.C. Hudson (1972) World Handbook of Political and Social Indicators. New Haven: Yale Univ. Press.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.