Show simple item record

Microwave growth from the beam breakup instability in long‐pulse electron beam experiments

dc.contributor.authorMenge, P. R.en_US
dc.contributor.authorGilgenbach, Ronald M.en_US
dc.contributor.authorBosch, R. A.en_US
dc.date.accessioned2010-05-06T20:14:31Z
dc.date.available2010-05-06T20:14:31Z
dc.date.issued1992-08-10en_US
dc.identifier.citationMenge, P. R.; Gilgenbach, R. M.; Bosch, R. A. (1992). "Microwave growth from the beam breakup instability in long‐pulse electron beam experiments." Applied Physics Letters 61(6): 642-644. <http://hdl.handle.net/2027.42/69350>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69350
dc.description.abstractThe beam breakup (BBU) instability has been investigated in high‐current, long‐pulse electron beams propagating through microwave cavities. Experiments are performed using a relativistic electron‐beam generator with diode parameters: 0.7–0.8 MV, 1–15 kA, and 0.5–1.5 μs. The magnitude of the solenoidal magnetic field places these experiments in an intermediate regime between strong focusing and weak focusing. The electron‐beam transport system consists of ten identical pillbox cavities each containing a small microwave loop antenna designed to detect the TM110 beam breakup mode. The TM110 microwave mode is primed in the first cavity by a magnetron tuned to the resonance frequency of 2.5 GHz. The BBU instability growth is measured through the amplification of the 2.5 GHz microwaves between the second and tenth cavities. Strong growth (25–38 dB) of the TM110 microwave signal is observed when the initial cavity is primed exactly on resonance, with a rapid decrease of the growth rate off‐resonance. The magnitude of microwave growth is consistent with the predictions of BBU theory.en_US
dc.format.extent3102 bytes
dc.format.extent416815 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMicrowave growth from the beam breakup instability in long‐pulse electron beam experimentsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumIntense Energy Beam Interaction Laboratory, Nuclear Engineering Department, University of Michigan, Ann Arbor, Michigan 48109‐2104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69350/2/APPLAB-61-6-642-1.pdf
dc.identifier.doi10.1063/1.107808en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceW. K. H. Panofsky and M. Bander, Rev. Sci. Instrum. 39, 206 (1968).en_US
dc.identifier.citedreferenceR. Helm and G. Loew, Linear Accelerators, edited by P. M. Lapostelle and A. L. Septier (North Holland, Amsterdam, 1970), Chap. B.l. 4, p. 173.en_US
dc.identifier.citedreferenceY. Y. Lau, Phys. Rev. Lett. 63, 1141 (1989).en_US
dc.identifier.citedreferenceB. B. Godfrey, D. J. Sillivan, M. J. Arman, T. C. Genoni, and J. E. Walsh, Proc. SPIE Int. Soc. Opt. Eng. 1061, 84 (1989).en_US
dc.identifier.citedreferenceT. J. T. Kwan, M. A. Mostrom, and B. B. Godfrey, Phys. Rev. Lett. 66, 3221 (1991).en_US
dc.identifier.citedreferenceP. J. Tallerico, IEEE Electron Devices ED-26, 1559 (1979).en_US
dc.identifier.citedreferenceR. J. Adler, J. R. Bayless, S. Humphries, Jr., and George A. Proulx, Pulse Sciences, Inc., San Leandro, CA, Report PSI-FR-2293-1 (1988).en_US
dc.identifier.citedreferenceV. K. Neil and R. K. Cooper, Part. Accel. 1, 111 (1970).en_US
dc.identifier.citedreferenceV. K. Neil, L. S. Hall, and R. K. Cooper, Part. Accel. 9, 213 (1979).en_US
dc.identifier.citedreferenceA. W. Chao, B. Richter, and C. Y. Yao, Nucl. Instrum. Methods 178, 1 (1980).en_US
dc.identifier.citedreferenceR. L. Gluckstern, R. K. Cooper, and P. J. Channell, Part. Accel. 16, 125 (1985).en_US
dc.identifier.citedreferenceD. G. Colombant and Y. Y. Lau, Appl. Phys. Lett. 55, 27 (1989).en_US
dc.identifier.citedreferenceC. L. Bonn and J. R. Delayen, in Conference Record of 1991 IEEE Particle Accelerator Conference, IEEE Catalogue No. 91 CH3038-7, 3, 1809 (1991).en_US
dc.identifier.citedreferenceP. R. Menge, R. M. Gilgenbach, R. A. Bosch, H. Ching, T. A. Spencer, and M. Walter, Proc. SPIE 1629, 529 (1992).en_US
dc.identifier.citedreferenceS. Gold (private communication).en_US
dc.identifier.citedreferenceG. J. Caporaso, F. Rainer, W. E. Martin, D. S. Prono, and A. G. Cole, Phys. Rev. Lett. 57, 1591 (1986).en_US
dc.identifier.citedreferenceR. M. Gilgenbach, L. D. Horton, R. F. Lucey, Jr., S. Bidwell, M. Cuneo, J. Miller, and L. Smutek, in Digest of the 5th IEEE Pulsed Power Conference (IEEE, New York, NY, 1985), p. 126.en_US
dc.identifier.citedreferenceR. A. Bosch and R. M. Gilgenbach, Appl. Phys. Lett. 58, 699 (1991).en_US
dc.identifier.citedreferenceThe epsilon factor for the TM110TM110 mode is ϵ  =  0.422(l/L)[I(kArpar;/17](β/γ/),ϵ=0.422(l∕L)[I(kArpar;∕17](β∕γ∕), where l is the cavity length, L is the cavity spacing, I is the beam current, and β and γ are the usual relativistic velocity and mass factors. See Refs. 3 and 12 for further explanation.en_US
dc.identifier.citedreferenceR. A. Bosch, P. R. Menge, and R. M. Gilgenbach, J. Appl. Phys. 71, 3091 (1992).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.