Vibrational relaxation of I2I2 in complexing solvents: The role of solvent–solute attractive forces

Show simple item record

dc.contributor.author Shiang, Joseph J. en_US
dc.contributor.author Liu, Hongjun en_US
dc.contributor.author Sension, Roseanne J. en_US
dc.date.accessioned 2010-05-06T20:33:16Z
dc.date.available 2010-05-06T20:33:16Z
dc.date.issued 1998-12-01 en_US
dc.identifier.citation Shiang, Joseph J.; Liu, Hongjun; Sension, Roseanne J. (1998). "Vibrational relaxation of I2I2 in complexing solvents: The role of solvent–solute attractive forces." The Journal of Chemical Physics 109(21): 9494-9501. <http://hdl.handle.net/2027.42/69406> en_US
dc.identifier.uri http://hdl.handle.net/2027.42/69406
dc.description.abstract Femtosecond transient absorption studies of I2–areneI2–arene complexes, with arene=hexamethylbenzenearene=hexamethylbenzene (HMB), mesitylene (MST), or m-xylene (mX), are used to investigate the effect of solvent–solute attractive forces upon the rate of vibrational relaxation in solution. Comparison of measurements on I2–MSTI2–MST complexes in neat mesitylene and I2–MSTI2–MST complexes diluted in carbontetrachloride demonstrate that binary solvent–solute attractive forces control the rate of vibrational relaxation in this prototypical model of diatomic vibrational relaxation. The data obtained for different arenes demonstrate that the rate of I2I2 relaxation increases with the magnitude of the I2–areneI2–arene attractive interaction. I2–HMBI2–HMB relaxes much faster than I2I2 in MST or mX. The results of these experiments are discussed in terms of both isolated binary collision and instantaneous normal mode models for vibrational relaxation. © 1998 American Institute of Physics. en_US
dc.format.extent 3102 bytes
dc.format.extent 164066 bytes
dc.format.mimetype text/plain
dc.format.mimetype application/pdf
dc.publisher The American Institute of Physics en_US
dc.rights © The American Institute of Physics en_US
dc.title Vibrational relaxation of I2I2 in complexing solvents: The role of solvent–solute attractive forces en_US
dc.subject.hlbsecondlevel Physics en_US
dc.subject.hlbtoplevel Science en_US
dc.description.peerreviewed Peer Reviewed en_US
dc.contributor.affiliationum Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055 en_US
dc.description.bitstreamurl http://deepblue.lib.umich.edu/bitstream/2027.42/69406/2/JCPSA6-109-21-9494-1.pdf
dc.identifier.doi 10.1063/1.477611 en_US
dc.identifier.source The Journal of Chemical Physics en_US
dc.identifier.citedreference For recent reviews see: (a) C. B. Harris, D. E. Smith, and D. J. Russell, Chem. Rev. CHREAY90, 481 (1990); (b) J. J. Owrutsky, D. Raftery, and R. M. Hochstrasser, Annu. Rev. Phys. Chem. ARPLAP54, 519 (1994). en_US
dc.identifier.citedreference R. Biswas, S. Bhattacharyya, and B. Bagchi, J. Chem. Phys. JCPSA6108, 4963 (1998). en_US
dc.identifier.citedreference D. J. Nesbitt and J. T. Hynes, J. Chem. Phys. JCPSA676, 6002 (1982). en_US
dc.identifier.citedreference J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, J. Phys. Chem. A JPCAFH102, 4158 (1998). en_US
dc.identifier.citedreference G. Goodyear and R. M. Stratt, J. Chem. Phys. JCPSA6105, 10050 (1996). en_US
dc.identifier.citedreference R. E. Larsen, E. F. David, G. Goodyear, and R. M. Stratt, J. Chem. Phys. JCPSA6107, 524 (1997). en_US
dc.identifier.citedreference G. Goodyear and R. M. Stratt, J. Chem. Phys. JCPSA6107, 3098 (1997). en_US
dc.identifier.citedreference B. M. Ladanyi and R. M. Stratt, J. Phys. Chem. JPCHAX102, 1068 (1998). en_US
dc.identifier.citedreference D. Schwarzer, J. Troe, M. Votsmeier, and M. Zerezke, J. Chem. Phys. JCPSA6105, 3121 (1996). en_US
dc.identifier.citedreference M. E. Paige and C. B. Harris, J. Chem. Phys. JCPSA693, 3712 (1990). en_US
dc.identifier.citedreference A. L. Harris, M. Berg, and C. B. Harris, J. Chem. Phys. JCPSA684, 788 (1986). en_US
dc.identifier.citedreference X. Xu, S.-C. Yu, R. Lingle, H. Zhu, and J. B. Hopkins, J. Chem. Phys. JCPSA695, 2445 (1991). en_US
dc.identifier.citedreference U. Banin, R. Kosloff, and S. Ruhman, Chem. Phys. CMPHC2183, 289 (1994). en_US
dc.identifier.citedreference P. K. Walhout, J. C. Alfano, K. A. M. Thakur, and P. F. Barbara, J. Phys. Chem. JPCHAX99, 7568 (1995). en_US
dc.identifier.citedreference R. Zadoyan, Z. Li, P. Ashjian, C. Martens, and V. Apkarian, Chem. Phys. Lett. CHPLBC218, 504 (1994); J. Chem. Phys. JCPSA6101, 6648 (1994). en_US
dc.identifier.citedreference J. Franck and E. Rabinowitch, Trans. Faraday Soc. TFSOA430, 120 (1934); E. Rabinowitch and W. C. Wood, 32, 547 (1936). en_US
dc.identifier.citedreference P. Moore, A. Tokmakoff, T. Keyes, and M. D. Fayer, J. Chem. Phys. JCPSA6103, 3325 (1995). en_US
dc.identifier.citedreference J. Lascombe and M. Besnard, Mol. Phys. MOPHAM58, 573 (1986). en_US
dc.identifier.citedreference B. B. Bhowmik and S. P. Chattopadhyay, Spectrochim. Acta A SAMCAS37, 135 (1981). en_US
dc.identifier.citedreference W. Keifer and H. J. Bernstein, J. Raman Spectrosc. JRSPAF1, 417 (1973). en_US
dc.identifier.citedreference H. Rosen, Y. R. Shen, and F. Stenman, Mol. Phys. MOPHAM22, 33 (1971). en_US
dc.identifier.citedreference S. Pullen, L. A. Walker II, and R. J. Sension, J. Chem. Phys. JCPSA6103, 7877 (1995). en_US
dc.identifier.citedreference H. J. Liu., S. H. Pullen, L. A. Walker II, and R. J. Sension, J. Chem. Phys. JCPSA6108, 4992 (1998). en_US
dc.identifier.citedreference D. W. Oxtoby, Mol. Phys. MOPHAM34, 987 (1977). en_US
dc.identifier.citedreference J. Chesnoy and J. J. Weis, J. Chem. Phys. JCPSA684, 5378 (1986). en_US
dc.identifier.citedreference P. S. Dardi and R. I. Cukier, J. Chem. Phys. JCPSA689, 4145 (1988); 86, 6893 (1987); 86, 2264 (1987). en_US
dc.identifier.citedreference D. J. Russell and C. B. Harris, Chem. Phys. CMPHC2183, 325 (1994). en_US
dc.identifier.citedreference E. Lenderink, K. Duppen, F. P. X. Everdij, J. Mavri, R. Torre, and D. A. Wiersma, J. Phys. Chem. JPCHAX100, 7822 (1996), E. Lenderink, K. Duppen, and D. A. Wiersma, Chem. Phys. Lett. CHPLBC211, 503 (1993). en_US
dc.identifier.citedreference E. F. Hilinski and P. M. Rentzepis, J. Am. Chem. Soc. JACSAT107, 5907 (1985). en_US
dc.identifier.citedreference N. Pugliano, A. Z. Szarka, S. Gnanakaran, M. Triechel, and R. M. Hochstrasser, J. Chem. Phys. JCPSA6103, 6498 (1995). en_US
dc.identifier.citedreference Equation (11) of Ref. 1(b) gives an expression for kn,n−1kn,n−1 in terms of η(ω) which we then combine with Eqs. (3) and (5). en_US
dc.identifier.citedreference I. Benjamin and R. M. Whitnell, Chem. Phys. Lett. CHPLBC204, 45 (1993). en_US
dc.identifier.citedreference D. Chandler, J. D. Weeks, and H. C. Anderson, Science SCIEAS220, 787 (1983). en_US
dc.owningcollname Physics, Department of
 Show simple item record

This item appears in the following Collection(s)


Search Deep Blue

Advanced Search

Browse by

My Account

Information

Coming Soon


MLibrary logo