Show simple item record

Vibrational relaxation of I2I2 in complexing solvents: The role of solvent–solute attractive forces

dc.contributor.authorShiang, Joseph J.en_US
dc.contributor.authorLiu, Hongjunen_US
dc.contributor.authorSension, Roseanne J.en_US
dc.date.accessioned2010-05-06T20:33:16Z
dc.date.available2010-05-06T20:33:16Z
dc.date.issued1998-12-01en_US
dc.identifier.citationShiang, Joseph J.; Liu, Hongjun; Sension, Roseanne J. (1998). "Vibrational relaxation of I2I2 in complexing solvents: The role of solvent–solute attractive forces." The Journal of Chemical Physics 109(21): 9494-9501. <http://hdl.handle.net/2027.42/69406>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69406
dc.description.abstractFemtosecond transient absorption studies of I2–areneI2–arene complexes, with arene=hexamethylbenzenearene=hexamethylbenzene (HMB), mesitylene (MST), or m-xylene (mX), are used to investigate the effect of solvent–solute attractive forces upon the rate of vibrational relaxation in solution. Comparison of measurements on I2–MSTI2–MST complexes in neat mesitylene and I2–MSTI2–MST complexes diluted in carbontetrachloride demonstrate that binary solvent–solute attractive forces control the rate of vibrational relaxation in this prototypical model of diatomic vibrational relaxation. The data obtained for different arenes demonstrate that the rate of I2I2 relaxation increases with the magnitude of the I2–areneI2–arene attractive interaction. I2–HMBI2–HMB relaxes much faster than I2I2 in MST or mX. The results of these experiments are discussed in terms of both isolated binary collision and instantaneous normal mode models for vibrational relaxation. © 1998 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent164066 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleVibrational relaxation of I2I2 in complexing solvents: The role of solvent–solute attractive forcesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69406/2/JCPSA6-109-21-9494-1.pdf
dc.identifier.doi10.1063/1.477611en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceFor recent reviews see: (a) C. B. Harris, D. E. Smith, and D. J. Russell, Chem. Rev. CHREAY90, 481 (1990); (b) J. J. Owrutsky, D. Raftery, and R. M. Hochstrasser, Annu. Rev. Phys. Chem. ARPLAP54, 519 (1994).en_US
dc.identifier.citedreferenceR. Biswas, S. Bhattacharyya, and B. Bagchi, J. Chem. Phys. JCPSA6108, 4963 (1998).en_US
dc.identifier.citedreferenceD. J. Nesbitt and J. T. Hynes, J. Chem. Phys. JCPSA676, 6002 (1982).en_US
dc.identifier.citedreferenceJ. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, J. Phys. Chem. A JPCAFH102, 4158 (1998).en_US
dc.identifier.citedreferenceG. Goodyear and R. M. Stratt, J. Chem. Phys. JCPSA6105, 10050 (1996).en_US
dc.identifier.citedreferenceR. E. Larsen, E. F. David, G. Goodyear, and R. M. Stratt, J. Chem. Phys. JCPSA6107, 524 (1997).en_US
dc.identifier.citedreferenceG. Goodyear and R. M. Stratt, J. Chem. Phys. JCPSA6107, 3098 (1997).en_US
dc.identifier.citedreferenceB. M. Ladanyi and R. M. Stratt, J. Phys. Chem. JPCHAX102, 1068 (1998).en_US
dc.identifier.citedreferenceD. Schwarzer, J. Troe, M. Votsmeier, and M. Zerezke, J. Chem. Phys. JCPSA6105, 3121 (1996).en_US
dc.identifier.citedreferenceM. E. Paige and C. B. Harris, J. Chem. Phys. JCPSA693, 3712 (1990).en_US
dc.identifier.citedreferenceA. L. Harris, M. Berg, and C. B. Harris, J. Chem. Phys. JCPSA684, 788 (1986).en_US
dc.identifier.citedreferenceX. Xu, S.-C. Yu, R. Lingle, H. Zhu, and J. B. Hopkins, J. Chem. Phys. JCPSA695, 2445 (1991).en_US
dc.identifier.citedreferenceU. Banin, R. Kosloff, and S. Ruhman, Chem. Phys. CMPHC2183, 289 (1994).en_US
dc.identifier.citedreferenceP. K. Walhout, J. C. Alfano, K. A. M. Thakur, and P. F. Barbara, J. Phys. Chem. JPCHAX99, 7568 (1995).en_US
dc.identifier.citedreferenceR. Zadoyan, Z. Li, P. Ashjian, C. Martens, and V. Apkarian, Chem. Phys. Lett. CHPLBC218, 504 (1994); J. Chem. Phys. JCPSA6101, 6648 (1994).en_US
dc.identifier.citedreferenceJ. Franck and E. Rabinowitch, Trans. Faraday Soc. TFSOA430, 120 (1934); E. Rabinowitch and W. C. Wood, 32, 547 (1936).en_US
dc.identifier.citedreferenceP. Moore, A. Tokmakoff, T. Keyes, and M. D. Fayer, J. Chem. Phys. JCPSA6103, 3325 (1995).en_US
dc.identifier.citedreferenceJ. Lascombe and M. Besnard, Mol. Phys. MOPHAM58, 573 (1986).en_US
dc.identifier.citedreferenceB. B. Bhowmik and S. P. Chattopadhyay, Spectrochim. Acta A SAMCAS37, 135 (1981).en_US
dc.identifier.citedreferenceW. Keifer and H. J. Bernstein, J. Raman Spectrosc. JRSPAF1, 417 (1973).en_US
dc.identifier.citedreferenceH. Rosen, Y. R. Shen, and F. Stenman, Mol. Phys. MOPHAM22, 33 (1971).en_US
dc.identifier.citedreferenceS. Pullen, L. A. Walker II, and R. J. Sension, J. Chem. Phys. JCPSA6103, 7877 (1995).en_US
dc.identifier.citedreferenceH. J. Liu., S. H. Pullen, L. A. Walker II, and R. J. Sension, J. Chem. Phys. JCPSA6108, 4992 (1998).en_US
dc.identifier.citedreferenceD. W. Oxtoby, Mol. Phys. MOPHAM34, 987 (1977).en_US
dc.identifier.citedreferenceJ. Chesnoy and J. J. Weis, J. Chem. Phys. JCPSA684, 5378 (1986).en_US
dc.identifier.citedreferenceP. S. Dardi and R. I. Cukier, J. Chem. Phys. JCPSA689, 4145 (1988); 86, 6893 (1987); 86, 2264 (1987).en_US
dc.identifier.citedreferenceD. J. Russell and C. B. Harris, Chem. Phys. CMPHC2183, 325 (1994).en_US
dc.identifier.citedreferenceE. Lenderink, K. Duppen, F. P. X. Everdij, J. Mavri, R. Torre, and D. A. Wiersma, J. Phys. Chem. JPCHAX100, 7822 (1996), E. Lenderink, K. Duppen, and D. A. Wiersma, Chem. Phys. Lett. CHPLBC211, 503 (1993).en_US
dc.identifier.citedreferenceE. F. Hilinski and P. M. Rentzepis, J. Am. Chem. Soc. JACSAT107, 5907 (1985).en_US
dc.identifier.citedreferenceN. Pugliano, A. Z. Szarka, S. Gnanakaran, M. Triechel, and R. M. Hochstrasser, J. Chem. Phys. JCPSA6103, 6498 (1995).en_US
dc.identifier.citedreferenceEquation (11) of Ref. 1(b) gives an expression for kn,n−1kn,n−1 in terms of η(ω) which we then combine with Eqs. (3) and (5).en_US
dc.identifier.citedreferenceI. Benjamin and R. M. Whitnell, Chem. Phys. Lett. CHPLBC204, 45 (1993).en_US
dc.identifier.citedreferenceD. Chandler, J. D. Weeks, and H. C. Anderson, Science SCIEAS220, 787 (1983).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.