Show simple item record

Radial Expansion of 3d3d Orbitals and the Near Degeneracy of the 4A1g4A1g and 4Eg4Eg Excited States of Octahedral Mn(II) Complexes

dc.contributor.authorLohr, Lawrence L. Jr.en_US
dc.date.accessioned2010-05-06T20:34:40Z
dc.date.available2010-05-06T20:34:40Z
dc.date.issued1971-07-01en_US
dc.identifier.citationLohr, Lawrence L. (1971). "Radial Expansion of 3d3d Orbitals and the Near Degeneracy of the 4A1g4A1g and 4Eg4Eg Excited States of Octahedral Mn(II) Complexes." The Journal of Chemical Physics 55(1): 27-32. <http://hdl.handle.net/2027.42/69421>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69421
dc.description.abstractThe relationship between the wavefunctions for mostly 3d3d molecular orbitals and the energies of the nearly degenerate 4A1g4A1g and 4Eg4Eg excited states of octahedral Mn2+ complexes is investigated from two points of view. First, the expressions relating the energy splitting to the degree of covalency have been extended within the framework of the intermediate neglect of differential overlap (INDO) approximation to include the large but previously neglected two‐center Coulomb integrals and all ligand one‐center Coulomb and exchange integrals. The results resemble those previously obtained in their inability to account for the spectral assignment of the 4Eg4Eg state below 4A1g4A1g for the MnF64− complex in the salts KMnF3, RbMnF3, and MnF2. Second, the assumption of identical metal‐ion repulsion integrals for the egeg and t2gt2g molecular orbitals is discarded in a simple analysis of an all‐electron molecular SCF calculation for the MnF64− complex. While both the egeg and t2gt2g orbitals contain a metal‐ion dd orbital that is expanded relative to that for the free Mn2+ ion, the slightly greater radial expansion for the t2gt2g orbital is shown to qualitatively account for the observed ordering of the 4A1g4A1g and 4Eg4Eg states.en_US
dc.format.extent3102 bytes
dc.format.extent473387 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleRadial Expansion of 3d3d Orbitals and the Near Degeneracy of the 4A1g4A1g and 4Eg4Eg Excited States of Octahedral Mn(II) Complexesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69421/2/JCPSA6-55-1-27-1.pdf
dc.identifier.doi10.1063/1.1675519en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceL. L. Lohr, Jr. and D. S. McClure, J. Chem. Phys. 49, 3516 (1968).en_US
dc.identifier.citedreferenceR. S. Meltzer, M. Lowe, and D. S. McClure, Phys. Rev. 180, 561 (1969).en_US
dc.identifier.citedreferenceC. Marzzacco and D. S. McClure, Symp. Faraday Soc. 3, 106 (1969).en_US
dc.identifier.citedreferenceD. H. Goode, J. Chem. Phys. 43, 2830 (1965).en_US
dc.identifier.citedreferenceS. Koide and M. H. L. Pryce, Phil. Mag. 3, 607 (1958).en_US
dc.identifier.citedreferenceJ. W. Stout, J. Chem. Phys. 31, 709 (1959); and 33, 303 (1960).en_US
dc.identifier.citedreferenceL. L. Lohr, Jr., J. Chem. Phys. 45, 3611 (1966). The diagonal electron‐repulsion energy in Table II for the 4E(I):4E(I): θ state should be changed to have the following coefficients for the integrals: −1−1 for (12, 21), ½12 for (23, 32), −⅚−56 for (14, 41) and (15, 51), and −⅓−13 for (34, 43) and (35, 53), the last integral being mislabeled as (33, 53). These changes have no effect on the energy for octahedral complexes, but do slightly affect results for distorted complexes. In addition, the splitting of −288 cm−1−288cm−1 in Table IV for ft2  =  1.00ft2=1.00 and fe  =  0.95fe=0.95 should read −138 cm−1.−138cm−1.en_US
dc.identifier.citedreferenceR. Stevenson, Phys. Rev. 152, 531 (1966).en_US
dc.identifier.citedreferenceJ. Ferguson, Australian J. Chem. 21, 307 (1968); also see J. Ferguson, H. J. Guggenheim, and T. Tanabe, J. Appl. Phys. 36, 1048 (1965;) Phys. Rev. Letters 14, 737 (1965).en_US
dc.identifier.citedreferenceR. S. Meltzer and L. L. Lohr, Jr., J. Chem. Phys. 49, 541 (1968).en_US
dc.identifier.citedreferenceD. P. Craig and E. A. Magnusson, Discussions Faraday Soc. 26, 116 (1958).en_US
dc.identifier.citedreferenceJ. A. Pople, D. P. Santry, and G. A. Segal, J. Chem. Phys. 43, S129 (1965).en_US
dc.identifier.citedreferenceJ. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys. 47, 2026 (1967).en_US
dc.identifier.citedreferenceH. Basch, C. J. Hornback, and J. W. Moskowitz (unpublished) [H. Basch (private communication)].en_US
dc.identifier.citedreferenceJ. W. Moskowitz, C. Hollister, C. J. Hornback, and H. Basch, J. Chem. Phys. 53, 2570 (1970).en_US
dc.identifier.citedreferenceR. E. Watson, Phys. Rev. 118, 1036 (1960).en_US
dc.identifier.citedreferenceS. Huzinaga and Y. Sakai, J. Chem. Phys. 50, 1371 (1969).en_US
dc.identifier.citedreferenceH. Basch, C. J. Hornback, and J. W. Moskowitz, J. Chem. Phys. 51, 1311 (1969).en_US
dc.identifier.citedreferenceA. J. Freeman and D. E. Ellis, Phys. Rev. Letters 24, 516 (1970); see also T. F. Soules and J. W. Richardson, Phys. Rev. Letters 25, 110 (1970).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.