Show simple item record

Simulations of dynamical stabilization of Ag–Cu nanocomposites by ion-beam processing

dc.contributor.authorEnrique, R. A.en_US
dc.contributor.authorNordlund, K.en_US
dc.contributor.authorAverback, R. S.en_US
dc.contributor.authorBellon, P.en_US
dc.date.accessioned2010-05-06T20:35:50Z
dc.date.available2010-05-06T20:35:50Z
dc.date.issued2003-03-01en_US
dc.identifier.citationEnrique, R. A.; Nordlund, K.; Averback, R. S.; Bellon, P. (2003). "Simulations of dynamical stabilization of Ag–Cu nanocomposites by ion-beam processing." Journal of Applied Physics 93(5): 2917-2923. <http://hdl.handle.net/2027.42/69434>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69434
dc.description.abstractRecent theoretical results indicate that ion-beam mixing can be used to synthesize nanocomposite structures from immiscible elements, relying on a self-organization phenomenon at steady state under irradiation. According to this modeling, self organization requires that the range of the forced atomic relocations in displacement cascades exceeds a critical value. Experimental evidence supporting the formation of nanocomposites by this mechanism has been found in the immiscible system Ag–Cu irradiated with 1 MeV Kr ions. To address this experimentally relevant model system, and to test the theoretical predictions, we study, by molecular dynamics (MD), the characteristics of irradiation mixing in a Ag–Cu alloy subjected to bombardment with 62 keV He, 270 keV Ne, 500 keV Ar, and 1 MeV Kr ions. The distribution of atomic relocations measured by MD is then used to perform lattice kinetic Monte Carlo (KMC) simulations of phase evolution, during which both thermal decomposition and irradiation mixing operate simultaneously. The KMC results show that, in the framework of this self-organization mechanism, a nanocomposite structure can be stabilized at steady state by irradiation with heavy ions (Ne, Ar, and Kr), but not with He ions. As the characteristic relocation range for He ions is half of that measured for the heavy ions, these results support the theoretical prediction of the existence of a critical relocation range for compositional patterning to take place under irradiation. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent153203 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleSimulations of dynamical stabilization of Ag–Cu nanocomposites by ion-beam processingen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48103en_US
dc.contributor.affiliationotherAccelerator Laboratory, P.O. Box 43, 00014 University of Helsinki, Finlanden_US
dc.contributor.affiliationotherFrederick Seitz Materials Research Laboratoryen_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69434/2/JAPIAU-93-5-2917-1.pdf
dc.identifier.doi10.1063/1.1540743en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceP. Chakraborty, J. Mater. Sci. JMTSAS22, 2235 (1998).en_US
dc.identifier.citedreferenceNanotechnology Research directions: IWGN workshop report, NSF September 1999.en_US
dc.identifier.citedreferenceP. Bellon and R. S. Averback, Phys. Rev. Lett. PRLTAO74, 1819 (1995).en_US
dc.identifier.citedreferenceR. A. Enrique and P. Bellon, Phys. Rev. Lett. PRLTAO84, 2885 (2000).en_US
dc.identifier.citedreferenceR. A. Enrique and P. Bellon, Phys. Rev. B PRBMDO63, 134111 (2001).en_US
dc.identifier.citedreferenceF. Wu, P. Bellon, A. J. Melmed, and T. A. Lusby, Acta Mater. ACMAFD49, 453 (2001).en_US
dc.identifier.citedreferenceS. Zghal, R. Twesten, F. Wu, and P. Bellon, Acta Mater. ACMAFD50, 4711 (2002).en_US
dc.identifier.citedreferenceR. A. Enrique and P. Bellon, Appl. Phys. Lett. APPLAB78, 4178 (2001).en_US
dc.identifier.citedreferenceT. Klassen, U. Herr, and R. S. Averback, Acta Mater. ACMAFD71, 2821 (1997).en_US
dc.identifier.citedreferenceB. Y. Tsaur, S. S. Lau, and J. W. Mayer, Appl. Phys. Lett. APPLAB36, 823 (1980).en_US
dc.identifier.citedreferenceL. C. Wei and R. S. Averback, J. Appl. Phys. JAPIAU81, 613 (1997).en_US
dc.identifier.citedreferenceK.-H. Heinig, B. Schmidt, M. Strobel, and H. Bernas, Mater. Res. Soc. Symp. Proc. MRSPDH650, R9.6 (2000).en_US
dc.identifier.citedreferenceB. Schmidt, K.-H. Heinig, and A. Mücklich, Mater. Res. Soc. Symp. Proc. MRSPDH647, 011.20 (2000).en_US
dc.identifier.citedreferenceG. C. Rizza, M. Strobel, K.-H. Heinig, and H. Bernas, Nucl. Instrum. Methods Phys. Res. B NIMBEU178, 78 (2001).en_US
dc.identifier.citedreferenceR. S. Nelson, J. A. Hudson, and D. J. Mazey, J. Nucl. Mater. JNUMAM44, 318 (1972).en_US
dc.identifier.citedreferenceK. Nordlund, Comput. Mater. Sci. CMMSEM3, 448 (1995).en_US
dc.identifier.citedreferenceS. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B PRBMDO33, 7983 (1986).en_US
dc.identifier.citedreferenceT. J. Colla, H. M. Urbassek, K. Nordlund, and R. S. Averback, Phys. Rev. B PRBMDO63, 104206 (2000).en_US
dc.identifier.citedreferenceK. Nordlund, L. Wei, Y. Zhong, and R. S. Averback, Phys. Rev. B PRBMDO57, 13965 (1998), and references therein.en_US
dc.identifier.citedreferenceJ.-L. Bocquet, Defect Diffus. Forum DDAFE7203–205, 81 (2002).en_US
dc.identifier.citedreferenceG. Martin and P. Bellon, Solid State Phys. SSPHAE50, 189 (1997).en_US
dc.identifier.citedreferenceDoyama and Koehler, Acta Metall. AMETAR24, 871 (1976).en_US
dc.identifier.citedreferenceR. Najafabadi, D. J. Srolovitz, E. Ma, and M. Atzmon, J. Appl. Phys. JAPIAU74, 3144 (1993).en_US
dc.identifier.citedreferenceM. Asta and S. Foiles, Phys. Rev. B PRBMDO53, 2389 (1995).en_US
dc.identifier.citedreferenceV. Ozolins, C. Wolverton, and A. Zunger, Phys. Rev. B PRBMDO57, 6427 (1998).en_US
dc.identifier.citedreferenceR. Sizman, J. Nucl. Mater. JNUMAM69/70, 386 (1978).en_US
dc.identifier.citedreferenceP. Sigmund and A. Gras-Marti, Nucl. Instrum. Methods NUIMAL182/183, 25 (1981).en_US
dc.identifier.citedreferenceT. Diaz de la Rubia, R. S. Averback, R. Benedek, and W. E. King, Phys. Rev. Lett. PRLTAO59, 1930 (1987); 60, 76 (1988).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.