Show simple item record

Epitaxial growth of the first five members of the Srn+1TinO3n+1Srn+1TinO3n+1 Ruddlesden–Popper homologous series

dc.contributor.authorHaeni, J. H.en_US
dc.contributor.authorTheis, Chris D.en_US
dc.contributor.authorSchlom, Darrell G.en_US
dc.contributor.authorTian, Weien_US
dc.contributor.authorPan, Xiaoqingen_US
dc.contributor.authorChang, H.en_US
dc.contributor.authorTakeuchi, I.en_US
dc.contributor.authorXiang, X.-D.en_US
dc.date.accessioned2010-05-06T20:36:33Z
dc.date.available2010-05-06T20:36:33Z
dc.date.issued2001-05-21en_US
dc.identifier.citationHaeni, J. H.; Theis, C. D.; Schlom, D. G.; Tian, W.; Pan, X. Q.; Chang, H.; Takeuchi, I.; Xiang, X.-D. (2001). "Epitaxial growth of the first five members of the Srn+1TinO3n+1Srn+1TinO3n+1 Ruddlesden–Popper homologous series." Applied Physics Letters 78(21): 3292-3294. <http://hdl.handle.net/2027.42/69442>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69442
dc.description.abstractThe first five members of the Srn+1TinO3n+1Srn+1TinO3n+1 Ruddlesden–Popper homologous series, i.e., Sr2TiO4,Sr2TiO4, Sr3Ti2O7,Sr3Ti2O7, Sr4Ti3O10,Sr4Ti3O10, Sr5Ti4O13,Sr5Ti4O13, and Sr6Ti5O16,Sr6Ti5O16, have been grown by reactive molecular beam epitaxy. A combination of atomic absorption spectroscopy and reflection high-energy electron diffraction intensity oscillations were used for the strict composition control necessary for the synthesis of these phases. X-ray diffraction and high-resolution transmission electron microscope images confirm that these films are epitaxially oriented and nearly free of intergrowths. Dielectric measurements indicate that the dielectric constant tensor coefficient ϵ33ϵ33 increases from a minimum of 44±444±4 in the n = 1(Sr2TiO4)n=1(Sr2TiO4) film to a maximum of 263±2263±2 in the n = ∞(SrTiO3)n=∞(SrTiO3) film. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent309655 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEpitaxial growth of the first five members of the Srn+1TinO3n+1Srn+1TinO3n+1 Ruddlesden–Popper homologous seriesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802-5005en_US
dc.contributor.affiliationotherMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69442/2/APPLAB-78-21-3292-1.pdf
dc.identifier.doi10.1063/1.1371788en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceA. Brazdeikis, A. Vailionis, and A. S. Flodstrom, Physica C PHYCE6235–240, 711 (1994).en_US
dc.identifier.citedreferenceD. G. Schlom, J. N. Eckstein, I. Bozovic, Z. J. Chen, A. F. Marshall, K. E. von Dessonneck, and J. S. Harris, Jr., Proc. SPIE PSISDG1285, 234 (1990).en_US
dc.identifier.citedreferenceM. E. Klausmeier-Brown, G. F. Virshup, I. Bozovic, and J. N. Eckstein, Appl. Phys. Lett. APPLAB60, 2806 (1992).en_US
dc.identifier.citedreferenceR. Ramesh, S. Jin, and P. Marsh, Nature (London) NATUAS346, 420 (1990).en_US
dc.identifier.citedreferenceA. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Nature (London) NATUAS363, 56 (1993).en_US
dc.identifier.citedreferenceR. J. D. Tilley, J. Solid State Chem. JSSCBI21, 293 (1977).en_US
dc.identifier.citedreferenceS. N. Ruddlesden and P. Popper, Acta Crystallogr. ACCRA910, 538 (1957); 11, 54 (1958).en_US
dc.identifier.citedreferenceF. W. Van Keuls, R. R. Romanofsky, D. Y. Bohman, M. D. Winters, and F. A. Miranda, Appl. Phys. Lett. APPLAB71, 3075 (1997).en_US
dc.identifier.citedreferenceX. X. Xi, H.-C. Li, W. Si, A. A. Sirenko, I. A. Akimov, J. R. Fox, A. M. Clark, and J. Hao, J. Electroceram. JOELFJ4, 393 (2000).en_US
dc.identifier.citedreferenceR. A. McKee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett. PRLTAO81, 3014 (1998).en_US
dc.identifier.citedreferenceW. Kwestroo and H. A. M. Paping, J. Am. Ceram. Soc. JACTAW42, 292 (1959).en_US
dc.identifier.citedreferenceT. Nakamura, P.-H. Sun, Y. J. Shan, Y. Inaguma, M. Itoh, I.-S. Kim, J.-H. Sohn, M. Ikeda, T. Kitamura, and H. Konagaya, Ferroelectrics FEROA8196, 205 (1997).en_US
dc.identifier.citedreferencePhase Diagrams for Ceramists 1969 Supplement, edited by E. M. Levin, C. R. Robbins, and H. F. McMurdie (American Ceramic Society, Columbus, 1969), p. 93.en_US
dc.identifier.citedreferenceG. J. McCarthy, W. B. White, and R. Roy, J. Am. Ceram. Soc. JACTAW52, 463 (1969).en_US
dc.identifier.citedreferenceK. R. Udayakumar and A. N. Cormack, J. Am. Ceram. Soc. JACTAW71, C-469 (1988).en_US
dc.identifier.citedreferenceM. A. McCoy, R. W. Grimes, and W. E. Lee, Philos. Mag. A PMAADG75, 833 (1997).en_US
dc.identifier.citedreferenceC. Noguera, Philos. Mag. Lett. PMLEEG80, 173 (2000).en_US
dc.identifier.citedreferenceM. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Science SCIEAS266, 1540 (1994).en_US
dc.identifier.citedreferenceJ. H. Haeni, C. D. Theis, and D. G. Schlom, J. Electroceram. JOELFJ4, 385 (2000).en_US
dc.identifier.citedreferenceR. Seshadri, M. Hervieu, C. Martin, A. Maignan, B. Domenges, B. Raveau, and A. N. Fitch, Chem. Mater. CMATEX9, 1778 (1997).en_US
dc.identifier.citedreferenceS. Hendricks and E. Teller, J. Chem. Phys. JCPSA610, 147 (1942).en_US
dc.identifier.citedreferenceJ. B. Nelson and D. P. Riley, Proc. Phys. Soc. London PPSOAU57, 160 (1945).en_US
dc.identifier.citedreferenceW. Tian, X. Q. Pan, J. H. Haeni, and D. G. Schlom, J. Mater. Res. (to be published).en_US
dc.identifier.citedreferenceK. Hawkins and T. J. White, Philos. Trans. R. Soc. London, Ser. A PTRMAD336, 541 (1991).en_US
dc.identifier.citedreferenceT. Williams, F. Lichtenberg, A. Reller, and G. Bednorz, Mater. Res. Bull. MRBUAC26, 763 (1991).en_US
dc.identifier.citedreferenceJ. Sloan, P. D. Battle, M. A. Green, M. J. Rosseinskz, and J. F. Vente, J. Solid State Chem. JSSCBI138, 135 (1998).en_US
dc.identifier.citedreferenceC. Gao and X.-D. Xiang, Rev. Sci. Instrum. RSINAK69, 3846 (1998).en_US
dc.identifier.citedreferenceH. Chang, I. Takeuchi, and X.-D. Xiang, Appl. Phys. Lett. APPLAB74, 1165 (1999).en_US
dc.identifier.citedreferenceD. Mateika, H. Kohler, H. Laudan, and E. Volkel, J. Cryst. Growth JCRGAE109, 447 (1991).en_US
dc.identifier.citedreferenceS. C. Tidrow, A. Tauber, W. D. Wilber, R. T. Lareau, C. D. Brandle, G. W. Berkstresser, A. J. Ven Graitis, D. M. Potrepka, J. I. Budnick, and J. Z. Wu, IEEE Trans. Appl. Supercond. ITASE917, 1766 (1997).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.