Show simple item record

A derivation of the mixed quantum-classical Liouville equation from the influence functional formalism

dc.contributor.authorShi, Qiangen_US
dc.contributor.authorGeva, Eitanen_US
dc.date.accessioned2010-05-06T20:38:24Z
dc.date.available2010-05-06T20:38:24Z
dc.date.issued2004-08-22en_US
dc.identifier.citationShi, Qiang; Geva, Eitan (2004). "A derivation of the mixed quantum-classical Liouville equation from the influence functional formalism." The Journal of Chemical Physics 121(8): 3393-3404. <http://hdl.handle.net/2027.42/69462>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69462
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15303902&dopt=citationen_US
dc.description.abstractWe show that the mixed quantum-classical Liouville equation is equivalent to linearizing the forward-backward action in the influence functional. Derivations are provided in terms of either the diabatic or adiabatic basis sets. An application of the mixed quantum-classical Liouville equation for calculating the memory kernel of the generalized quantum master equation is also presented. The accuracy and computational feasibility of such an approach is demonstrated in the case of a two-level system nonlinearly coupled to an anharmonic bath. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent174370 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleA derivation of the mixed quantum-classical Liouville equation from the influence functional formalismen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.identifier.pmid15303902en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69462/2/JCPSA6-121-8-3393-1.pdf
dc.identifier.doi10.1063/1.1771641en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceB. J. Berne, G. Ciccotti, and D. F. Coker, Eds. Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, London, 1998).en_US
dc.identifier.citedreferenceN. Makri, Annu. Rev. Phys. Chem. ARPLAP50, 167 (1999).en_US
dc.identifier.citedreferenceP. Jungwirth and R. B. Gerber, Chem. Rev. (Washington, D.C.) CHREAY99, 1583 (1999).en_US
dc.identifier.citedreferenceR. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).en_US
dc.identifier.citedreferenceL. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).en_US
dc.identifier.citedreferenceH. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, New Jersey, 1995).en_US
dc.identifier.citedreferenceR. P. Feynman and F. L. Vernon, Jr., Ann. Phys. (Leipzig) ANPYA224, 118 (1963).en_US
dc.identifier.citedreferenceP. G. Wolynes, Phys. Rev. Lett. PRLTAO47, 968 (1981).en_US
dc.identifier.citedreferenceA. O. Caldeira and A. J. Leggett, Ann. Phys. (Leipzig) ANPYA2149, 374 (1983).en_US
dc.identifier.citedreferenceR. D. Coalson, J. Chem. Phys. JCPSA686, 995 (1987).en_US
dc.identifier.citedreferenceC. Mak and D. Chandler, Phys. Rev. A PLRAAN44, 2352 (1991).en_US
dc.identifier.citedreferenceM. Topaler and N. Makri, J. Chem. Phys. JCPSA6101, 7500 (1994).en_US
dc.identifier.citedreferenceM. Topaler and N. Makri, J. Chem. Phys. JCPSA697, 9001 (1992).en_US
dc.identifier.citedreferenceM. Topaler and N. Makri, Chem. Phys. Lett. CHPLBC210, 285 (1993).en_US
dc.identifier.citedreferenceM. Topaler and N. Makri, Chem. Phys. Lett. CHPLBC210, 448 (1993).en_US
dc.identifier.citedreferenceM. Topaler and N. Makri, J. Phys. Chem. JPCHAX100, 4430 (1996).en_US
dc.identifier.citedreferenceD. E. Makarov and N. Makri, Chem. Phys. Lett. CHPLBC221, 482 (1994).en_US
dc.identifier.citedreferenceN. Makri and D. Makarov, J. Chem. Phys. JCPSA6102, 4600 (1995).en_US
dc.identifier.citedreferenceN. Makri and D. Makarov, J. Chem. Phys. JCPSA6102, 4611 (1995).en_US
dc.identifier.citedreferenceN. Makri, J. Math. Phys. JMAPAQ36, 2430 (1995).en_US
dc.identifier.citedreferenceN. Makri, E. Sim, D. E. Makarov, and M. Topaler, Proc. Natl. Acad. Sci. U.S.A. PNASA693, 3926 (1996).en_US
dc.identifier.citedreferenceE. Sim and N. Makri, Comput. Phys. Commun. CPHCBZ99, 335 (1997).en_US
dc.identifier.citedreferenceE. Sim and N. Makri, J. Phys. Chem. B JPCBFK101, 5446 (1997).en_US
dc.identifier.citedreferenceN. Makri, J. Phys. Chem. A JPCAFH102, 4414 (1998).en_US
dc.identifier.citedreferenceJ. S. Shao and N. Makri, J. Chem. Phys. JCPSA6116, 507 (2002).en_US
dc.identifier.citedreferenceA. A. Golosov, R. A. Friesner, and P. Pechukas, J. Chem. Phys. JCPSA6110, 138 (1999).en_US
dc.identifier.citedreferenceA. A. Golosov, R. A. Friesner, and P. Pechukas, J. Chem. Phys. JCPSA6112, 2095 (2000).en_US
dc.identifier.citedreferenceN. Makri and K. Thompson, Chem. Phys. Lett. CHPLBC291, 101 (1998).en_US
dc.identifier.citedreferenceK. Thompson and N. Makri, J. Chem. Phys. JCPSA6110, 1343 (1999).en_US
dc.identifier.citedreferenceK. Thompson and N. Makri, Phys. Rev. E PLEEE859, R4729 (1999).en_US
dc.identifier.citedreferenceS. Nakajima, Prog. Theor. Phys. PTPKAV20, 948 (1958).en_US
dc.identifier.citedreferenceR. Zwanzig, Lect. Theor. Phys. LTHPAU3, 106 (1960).en_US
dc.identifier.citedreferenceR. Zwanzig, J. Chem. Phys. JCPSA633, 1338 (1960).en_US
dc.identifier.citedreferenceR. Zwanzig, Physica (Amsterdam) PHYSAG30, 1109 (1984).en_US
dc.identifier.citedreferenceI. Prigogine and P. Resibois, Physica (Amsterdam) PHYSAG27, 629 (1961).en_US
dc.identifier.citedreferenceF. Haake, Springer Tracts Mod. Phys. STPHBM66, 98 (1973).en_US
dc.identifier.citedreferenceH. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechanics (Springer, Berlin, 1982).en_US
dc.identifier.citedreferenceR. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin, 1987).en_US
dc.identifier.citedreferenceV. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, Berlin, 2000).en_US
dc.identifier.citedreferenceB. Yoon, J. M. Deutch, and J. H. Freed, J. Chem. Phys. JCPSA662, 4687 (1975).en_US
dc.identifier.citedreferenceI. Oppenheim, K. E. Shuler, and G. H. Weiss, Stochastic Processes in Chemical Physics: The Master Equation (MIT, Cambridge, MA, 1977).en_US
dc.identifier.citedreferenceS. Mukamel, I. Oppenheim, and J. Ross, Phys. Rev. A PLRAAN17, 1988 (1978).en_US
dc.identifier.citedreferenceV. Romero-Rochin and I. Oppenheim, Physica A PHYADX155, 52 (1989).en_US
dc.identifier.citedreferenceV. Romero-Rochin, A. Orsky, and I. Oppenheim, Physica A PHYADX156, 244 (1989).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. JCPSA6119, 12045 (2003).en_US
dc.identifier.citedreferenceM. P. Miller and C. W. McCurdy, J. Chem. Phys. JCPSA669, 5163 (1978).en_US
dc.identifier.citedreferenceC. W. Mccurdy, H. D. Meyer, and W. H. Miller, J. Phys. Chem. JPCHAX70, 3214 (1978).en_US
dc.identifier.citedreferenceH. D. Meyer and W. H. Miller, J. Chem. Phys. JCPSA670, 3214 (1979).en_US
dc.identifier.citedreferenceH. D. Meyer and W. H. Miller, J. Chem. Phys. JCPSA671, 2156 (1979).en_US
dc.identifier.citedreferenceG. Stock and M. Thoss, Phys. Rev. Lett. PRLTAO78, 578 (1997).en_US
dc.identifier.citedreferenceX. Sun, H. Wang, and W. H. Miller, J. Chem. Phys. JCPSA6109, 4190 (1998).en_US
dc.identifier.citedreferenceH. Wang, X. Song, D. Chandler, and W. H. Miller, J. Chem. Phys. JCPSA6110, 4828 (1999).en_US
dc.identifier.citedreferenceW. H. Miller, J. Phys. Chem. A JPCAFH105, 2942 (2001).en_US
dc.identifier.citedreferenceA. Schmid, J. Low Temp. Phys. JLTPAC49, 609 (1982).en_US
dc.identifier.citedreferenceR. E. Cline, Jr. and P. G. Wolynes, J. Chem. Phys. JCPSA688, 4334 (1988).en_US
dc.identifier.citedreferenceH. Kleinert and S. V. Shabanov, Phys. Lett. A PYLAAG200, 224 (1995).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. JCPSA6120, 10647 (2004).en_US
dc.identifier.citedreferenceH. Wang, X. Sun, and W. H. Miller, J. Chem. Phys. JCPSA6108, 9726 (1998).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Phys. Chem. A JPCAFH107, 9059 (2003).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Phys. Chem. A JPCAFH107, 9070 (2003).en_US
dc.identifier.citedreferenceE. Rabani, G. Krilov, and B. J. Berne, J. Chem. Phys. JCPSA6112, 2605 (2000).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Phys. Chem. A (in press).en_US
dc.identifier.citedreferenceJ. C. Tully, Faraday Discuss. FDISE6110, 407 (1998).en_US
dc.identifier.citedreferenceR. B. Gerber, V. Buch, and M. A. Ratner, J. Chem. Phys. JCPSA677, 3022 (1982).en_US
dc.identifier.citedreferenceG. D. Billing, J. Chem. Phys. JCPSA699, 5849 (1993).en_US
dc.identifier.citedreferenceJ. C. Tully and R. K. Preston, J. Chem. Phys. JCPSA655, 562 (1971).en_US
dc.identifier.citedreferenceW. H. Miller and T. F. George, J. Chem. Phys. JCPSA656, 5637 (1972).en_US
dc.identifier.citedreferenceJ. C. Tully, J. Chem. Phys. JCPSA693, 1061 (1990).en_US
dc.identifier.citedreferenceM. F. Herman, J. Chem. Phys. JCPSA6103, 8081 (1995).en_US
dc.identifier.citedreferenceD. F. Coker and L. Xiao, J. Chem. Phys. JCPSA6102, 496 (1995).en_US
dc.identifier.citedreferenceP. J. Kuntz, J. Chem. Phys. JCPSA695, 141 (1991).en_US
dc.identifier.citedreferenceO. V. Prezhdo and P. J. Rossky, J. Chem. Phys. JCPSA6107, 825 (1997).en_US
dc.identifier.citedreferenceY. L. Volobuev, M. D. Hack, M. S. Topaler, and D. G. Truhlar, J. Chem. Phys. JCPSA6112, 9716 (2000).en_US
dc.identifier.citedreferenceC. C. Martens and J. Fang, J. Chem. Phys. JCPSA6106, 4918 (1997).en_US
dc.identifier.citedreferenceA. Donoso and C. C. Martens, J. Phys. Chem. A JPCAFH102, 4291 (1998).en_US
dc.identifier.citedreferenceA. Donoso and C. C. Martens, J. Chem. Phys. JCPSA6112, 3980 (2000).en_US
dc.identifier.citedreferenceA. Donoso, D. Kohen, and C. C. Martens, J. Chem. Phys. JCPSA6112, 7345 (2000).en_US
dc.identifier.citedreferenceC. Schütte, Konard-Zuse-Zentrum für informationstechnik Belin Preprint SC 99 (June 1999).en_US
dc.identifier.citedreferenceM. Santer, U. Manthe, and G. Stock, J. Chem. Phys. JCPSA6114, 2001 (2001).en_US
dc.identifier.citedreferenceR. Kapral and G. Ciccotti, J. Chem. Phys. JCPSA6110, 8919 (1999).en_US
dc.identifier.citedreferenceS. Nielsen, R. Kapral, and G. Ciccotti, J. Chem. Phys. JCPSA6112, 6543 (2000).en_US
dc.identifier.citedreferenceC. Wan and J. Schofield, J. Chem. Phys. JCPSA6113, 7047 (2000).en_US
dc.identifier.citedreferenceC. Wan and J. Schofield, J. Chem. Phys. JCPSA6112, 4447 (2000).en_US
dc.identifier.citedreferenceA. Donoso and C. C. Martens, J. Chem. Phys. JCPSA6116, 10598 (2002).en_US
dc.identifier.citedreferenceK. Thompson and N. Makri, Chem. Phys. Lett. CHPLBC291, 101 (1998).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. JCPSA6118, 8173 (2003).en_US
dc.identifier.citedreferenceS. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.