Canonical partition function for the hydrogen atom via the Coulomb propagator
dc.contributor.author | Blinder, S. M. | en_US |
dc.date.accessioned | 2010-05-06T20:38:35Z | |
dc.date.available | 2010-05-06T20:38:35Z | |
dc.date.issued | 1995-03 | en_US |
dc.identifier.citation | Blinder, S. M. (1995). "Canonical partition function for the hydrogen atom via the Coulomb propagator." Journal of Mathematical Physics 36(3): 1208-1216. <http://hdl.handle.net/2027.42/69464> | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/69464 | |
dc.description.abstract | The electronic partition function for the hydrogen atom is derived by integration over the recently‐available Coulomb propagator. This provides a resolution to an old paradox in statistical mechanics: the apparent divergence of the hydrogen partition function. Electronic excitation does not contribute significantly to the standard‐state partition function until temperatures of the order of 5000 K. Thereafter, the continuum, with its immense density of states, makes the dominant contribution. From the discrete and continuum contributions to the partition function, a modification of the Saha–Boltzmann equation for the ionization equilibrium in atomic hydrogen is derived. © 1995 American Institute of Physics. | en_US |
dc.format.extent | 3102 bytes | |
dc.format.extent | 546767 bytes | |
dc.format.mimetype | text/plain | |
dc.format.mimetype | application/pdf | |
dc.publisher | The American Institute of Physics | en_US |
dc.rights | © The American Institute of Physics | en_US |
dc.title | Canonical partition function for the hydrogen atom via the Coulomb propagator | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Physics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109‐1055 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/69464/2/JMAPAQ-36-3-1208-1.pdf | |
dc.identifier.doi | 10.1063/1.531115 | en_US |
dc.identifier.source | Journal of Mathematical Physics | en_US |
dc.identifier.citedreference | K. Herzfeld, Ann. Phys. 51, 251 (1916); H. C. Urey, Astrophys. J. 49, 1 (1924); E. Fermi, Z. Phys. 26, 54 (1924); M. Planck, Ann. Phys. 75, 673 (1924); R. H. Fowler, Philos. Mag. 1, 845 (1926); R. H. Fowler, Statistical Mechanics (Cambridge University, Cambridge, 1936), p. 572ff; E. P. Wigner, Phys. Rev. 94, 77 (1954); R. E. Treves, 102, 1533 (1956); B. F. Gray, J. Chem. Phys. 36, 1801 (1962); 55, 2848 (1971); M. McChesney, Can. J. Phys. 42, 2473 (1964); S. J. Strickler, J. Chem. Ed. 43, 364 (1966); C. A. Rouse, Phys. Rev. 163, 62 (1967); A. Wehrl, Rev. Mod. Phys. 50, 221 (1978); M. Grabowski, Rep. Math. Phys. 23, 19 (1986). | en_US |
dc.identifier.citedreference | J. W. Gibbs, Elementary Principles in Statistical Mechanics (Yale University, New Haven, 1902; reprinted by Dover, New York, 1960), p. 35. | en_US |
dc.identifier.citedreference | See, for example, R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York 1965). | en_US |
dc.identifier.citedreference | S. M. Blinder, Phys. Rev. A 43, 13 (1991). | en_US |
dc.identifier.citedreference | A. I. Larkin, Zh. Exper. Teoret. Fiz. 38, 1896 (1960); English translation: Sov. Phys-JETP 11, 1363 (1960); W. Ebeling and R. Sändig, Ann. Phys. 28, 289 (1973). | en_US |
dc.identifier.citedreference | C. A. Rouse, Astrophys. J. 272, 377 (1983). | en_US |
dc.identifier.citedreference | S. M. Blinder, Phys. Rev. A 37, 973 (1988). | en_US |
dc.identifier.citedreference | L. Hostler and R. H. Pratt, Phys. Rev. Lett. 10, 469 (1963); L. Hostler, J. Math. Phys. 5, 591 (1964). | en_US |
dc.identifier.citedreference | S. M. Blinder, Int. J. Quantum Chem. S 18, 293 (1984), and references therein. | en_US |
dc.identifier.citedreference | H. Buchholz, The Confluent Hypergeometric Function (Springer, New York, 1969). | en_US |
dc.identifier.citedreference | S. M. Blinder, International Reviews of Science, Vol I, Theoretical Chemistry (Butterworths, London, 1975). | en_US |
dc.identifier.citedreference | E. T. Whittaker and G. N. Watson, A Course in Modern Analysis (Cambridge University, Cambridge, 1958), pp. 134–136. | en_US |
dc.identifier.citedreference | L. Hostler, J. Math. Phys. 11, 2966 (1970). | en_US |
dc.identifier.citedreference | H. Buchholz, Ref. 10, p. 140. | en_US |
dc.identifier.citedreference | S. M. Blinder, J. Math. Chem. 14, 319 (1993). | en_US |
dc.identifier.citedreference | See, for example, K. R. Lang, Astrophysical Formulae (Springer, New York, 1974), pp. 244ff. | en_US |
dc.owningcollname | Physics, Department of |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.