Show simple item record

Canonical partition function for the hydrogen atom via the Coulomb propagator

dc.contributor.authorBlinder, S. M.en_US
dc.date.accessioned2010-05-06T20:38:35Z
dc.date.available2010-05-06T20:38:35Z
dc.date.issued1995-03en_US
dc.identifier.citationBlinder, S. M. (1995). "Canonical partition function for the hydrogen atom via the Coulomb propagator." Journal of Mathematical Physics 36(3): 1208-1216. <http://hdl.handle.net/2027.42/69464>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69464
dc.description.abstractThe electronic partition function for the hydrogen atom is derived by integration over the recently‐available Coulomb propagator. This provides a resolution to an old paradox in statistical mechanics: the apparent divergence of the hydrogen partition function. Electronic excitation does not contribute significantly to the standard‐state partition function until temperatures of the order of 5000 K. Thereafter, the continuum, with its immense density of states, makes the dominant contribution. From the discrete and continuum contributions to the partition function, a modification of the Saha–Boltzmann equation for the ionization equilibrium in atomic hydrogen is derived. © 1995 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent546767 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleCanonical partition function for the hydrogen atom via the Coulomb propagatoren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109‐1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69464/2/JMAPAQ-36-3-1208-1.pdf
dc.identifier.doi10.1063/1.531115en_US
dc.identifier.sourceJournal of Mathematical Physicsen_US
dc.identifier.citedreferenceK. Herzfeld, Ann. Phys. 51, 251 (1916); H. C. Urey, Astrophys. J. 49, 1 (1924); E. Fermi, Z. Phys. 26, 54 (1924); M. Planck, Ann. Phys. 75, 673 (1924); R. H. Fowler, Philos. Mag. 1, 845 (1926); R. H. Fowler, Statistical Mechanics (Cambridge University, Cambridge, 1936), p. 572ff; E. P. Wigner, Phys. Rev. 94, 77 (1954); R. E. Treves, 102, 1533 (1956); B. F. Gray, J. Chem. Phys. 36, 1801 (1962); 55, 2848 (1971); M. McChesney, Can. J. Phys. 42, 2473 (1964); S. J. Strickler, J. Chem. Ed. 43, 364 (1966); C. A. Rouse, Phys. Rev. 163, 62 (1967); A. Wehrl, Rev. Mod. Phys. 50, 221 (1978); M. Grabowski, Rep. Math. Phys. 23, 19 (1986).en_US
dc.identifier.citedreferenceJ. W. Gibbs, Elementary Principles in Statistical Mechanics (Yale University, New Haven, 1902; reprinted by Dover, New York, 1960), p. 35.en_US
dc.identifier.citedreferenceSee, for example, R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York 1965).en_US
dc.identifier.citedreferenceS. M. Blinder, Phys. Rev. A 43, 13 (1991).en_US
dc.identifier.citedreferenceA. I. Larkin, Zh. Exper. Teoret. Fiz. 38, 1896 (1960); English translation: Sov. Phys-JETP 11, 1363 (1960); W. Ebeling and R. Sändig, Ann. Phys. 28, 289 (1973).en_US
dc.identifier.citedreferenceC. A. Rouse, Astrophys. J. 272, 377 (1983).en_US
dc.identifier.citedreferenceS. M. Blinder, Phys. Rev. A 37, 973 (1988).en_US
dc.identifier.citedreferenceL. Hostler and R. H. Pratt, Phys. Rev. Lett. 10, 469 (1963); L. Hostler, J. Math. Phys. 5, 591 (1964).en_US
dc.identifier.citedreferenceS. M. Blinder, Int. J. Quantum Chem. S 18, 293 (1984), and references therein.en_US
dc.identifier.citedreferenceH. Buchholz, The Confluent Hypergeometric Function (Springer, New York, 1969).en_US
dc.identifier.citedreferenceS. M. Blinder, International Reviews of Science, Vol I, Theoretical Chemistry (Butterworths, London, 1975).en_US
dc.identifier.citedreferenceE. T. Whittaker and G. N. Watson, A Course in Modern Analysis (Cambridge University, Cambridge, 1958), pp. 134–136.en_US
dc.identifier.citedreferenceL. Hostler, J. Math. Phys. 11, 2966 (1970).en_US
dc.identifier.citedreferenceH. Buchholz, Ref. 10, p. 140.en_US
dc.identifier.citedreferenceS. M. Blinder, J. Math. Chem. 14, 319 (1993).en_US
dc.identifier.citedreferenceSee, for example, K. R. Lang, Astrophysical Formulae (Springer, New York, 1974), pp. 244ff.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.