Show simple item record

Effect of Inert‐Gas Moderators on the (n, γ) Activated Reaction of I128 with CH4

dc.contributor.authorRack, Edward P.en_US
dc.contributor.authorGordus, Adon A.en_US
dc.date.accessioned2010-05-06T20:40:07Z
dc.date.available2010-05-06T20:40:07Z
dc.date.issued1961-06en_US
dc.identifier.citationRack, Edward P.; Gordus, Adon A. (1961). "Effect of Inert‐Gas Moderators on the (n, γ) Activated Reaction of I128 with CH4." The Journal of Chemical Physics 34(6): 1855-1860. <http://hdl.handle.net/2027.42/69481>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69481
dc.description.abstractIn the presence of a large excess of gaseous methane, 54.4±0.5% of I128 formed by (n, γ) activation was found to become stabilized in organic combination. The effects of inert‐gas additives in moderating the reaction of I128 with CH4 were determined in an effort to ascertain the mechanism. The data, extrapolated to zero mole‐fraction methane, indicate that xenon is capable of reducing the organic I128 to 11% whereas neon, argon, and krypton each reduce it to only about 36%. These data suggest that of the 54.4% organic I128, about 18.4% forms as a result of hot I128 reactions, 11% as a result of excited iodine atoms or I+ ions in the 3P2, 3P1, and/or 3P0 states, and 25% as a result of reactions of I+(1D2) ions.en_US
dc.format.extent3102 bytes
dc.format.extent408906 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEffect of Inert‐Gas Moderators on the (n, γ) Activated Reaction of I128 with CH4en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69481/2/JCPSA6-34-6-1855-1.pdf
dc.identifier.doi10.1063/1.1731784en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceJ. F. Hornig, G. Levey, and J. E. Willard, J. Chem. Phys. 20, 1556 (1952).en_US
dc.identifier.citedreferenceG. Levey and J. E. Willard, J. Chem. Phys. 25, 904 (1956).en_US
dc.identifier.citedreferenceS. Wexler and H. Davies, J. Chem. Phys. 20, 1688 (1952).en_US
dc.identifier.citedreferenceAmerican Institute of Physics Handbook (McGraw‐Hill Book Company, Inc., New York, 1957), p. 8–135.en_US
dc.identifier.citedreferenceM. Reier and M. H. Shamos, Phys. Rev. 100, 1302 (1955).en_US
dc.identifier.citedreferenceA. A. Gordus and J. E. Willard, J. Am. Chem. Soc. 79, 4609 (1957).en_US
dc.identifier.citedreferenceA. A. Gordus and C. Hsiung, Paper No. 49, IAEA Symposium on the Chemical Effects of Nuclear Transformations, Prague, October, 1960.en_US
dc.identifier.citedreferenceC. Hsiung, H. Hsiung, and A. A. Gordus, J. Chem. Phys. 34, 535 (1961).en_US
dc.identifier.citedreferenceA. Henglein and G. A. Muccini, Z. Naturforsch. 15a, 584 (1960).en_US
dc.identifier.citedreferenceThese data include those presented in this paper as well as additional unpublished data concerned with the moderation of the I128+CH4I128+CH4 reaction by molecular additives.en_US
dc.identifier.citedreferenceK. J. Laidler, The Chemical Kinetics of Excited States (Oxford University Press, New York, 1955), p. 103.en_US
dc.identifier.citedreferenceC. E. Moore, Natl. Bur. Standards Circ. No. 467, 108 (1958).en_US
dc.identifier.citedreferenceK. Watanabe, J. Chem. Phys. 26, 542 (1957).en_US
dc.identifier.citedreferenceE. F. Gurnee and J. L. Magee, J. Chem. Phys. 26, 1237 (1957).en_US
dc.identifier.citedreferenceP. J. Estrup and R. Wolfgang, J. Am. Chem. Soc. 82, 2665 (1960).en_US
dc.identifier.citedreferenceA. A. Gordus (unpublished data).en_US
dc.identifier.citedreferenceE. P. Rack and A. A. Gordus, J. Phys. Chem. (to be published).en_US
dc.identifier.citedreferenceThe diameters used19 were: I‐4.8, Xe‐4.9, Kr‐4.3, Ar‐3.6, Ne‐2.6, and CH4‐4.2 A.CH4‐4.2A.en_US
dc.identifier.citedreferenceS. Chapman and T. J. Cowling, The Mathematical Theory of Nonuniform Gases (Cambridge University Press, New York, 1953), p. 229.en_US
dc.identifier.citedreference(a) Reference 11, p. 57; (b) J. L. Magee and M. Burton, J. Am. Chem. Soc. 72, 1965 (1950).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.