Show simple item record

A second‐order theory for transverse ion heating and momentum coupling due to electrostatic ion cyclotron waves

dc.contributor.authorMiller, Ronald H.en_US
dc.contributor.authorWinske, Danen_US
dc.contributor.authorGary, S. Peteren_US
dc.date.accessioned2010-05-06T20:40:30Z
dc.date.available2010-05-06T20:40:30Z
dc.date.issued1992-09en_US
dc.identifier.citationMiller, Ronald H.; Winske, Dan; Gary, S. Peter (1992). "A second‐order theory for transverse ion heating and momentum coupling due to electrostatic ion cyclotron waves." Physics of Fluids B: Plasma Physics 4(9): 2964-2974. <http://hdl.handle.net/2027.42/69485>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69485
dc.description.abstractA second‐order theory for electrostatic instabilities driven by counterstreaming ion beams is developed which describes momentum coupling and heating of the plasma via wave–particle interactions. Exchange rates between the waves and particles are derived, which are suitable for the fluid equations simulating microscopic effects on macroscopic scales. Using a fully kinetic simulation, the electrostatic ion cyclotron instability due to counterstreaming H+ beams has been simulated. A power spectrum from the kinetic simulation is used to evaluate second‐order exchange rates. The calculated heating and momentum loss from second‐order theory is compared to the numerical simulation.en_US
dc.format.extent3102 bytes
dc.format.extent1369314 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleA second‐order theory for transverse ion heating and momentum coupling due to electrostatic ion cyclotron wavesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Atmospheric, Oceanic and Space Sciences, Space Physics Research Laboratory, The University of Michigan, Ann Arbor, Michigan 48109‐2143en_US
dc.contributor.affiliationotherApplied Theoretical Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545en_US
dc.contributor.affiliationotherSpace and Science Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69485/2/PFBPEI-4-9-2964-1.pdf
dc.identifier.doi10.1063/1.860135en_US
dc.identifier.sourcePhysics of Fluids B: Plasma Physicsen_US
dc.identifier.citedreferenceP. M. Banks and T. E. Holzer, J. Geophys. Res. 74, 6317 (1969).en_US
dc.identifier.citedreferenceE. G. Shelley, R. D. Sharp, and R. G. Johnson, Geophys. Res. Lett. 3, 654 (1976).en_US
dc.identifier.citedreferenceW. C. Feldman, J. R. Asbridge, S. J. Bame, and M. D. Montgomery, J. Geophys. Res. 78, 2017 (1973).en_US
dc.identifier.citedreferenceM. F. Thomsen, “Collisionless Shocks in the Heliosphere: Reviews of Current Research,” edited by B. T. Tsurutani and R. G. Stone, Geophysical Monograph 35, 253 (1988).en_US
dc.identifier.citedreferenceG. Paschmann, N. Sckopke, S. J. Bame, and J. T. Gosling, Geophys. Res. Lett. 9, 881 (1982).en_US
dc.identifier.citedreferenceC. L. Grabbe and T. E. Eastman, J. Geophys. Res. 89, 3865 (1984).en_US
dc.identifier.citedreferenceJ. J. Sojka and G. L. Wrenn, J. Geophys. Res. 90, 6379 (1985).en_US
dc.identifier.citedreferenceG. Gloeckler, D. Hoverstadt, F. M. Ipavich, M. Scholer, B. Klecker, and A. B. Galvin, Geophys. Res. Lett. 13, 251 (1986).en_US
dc.identifier.citedreferenceS. L. Moses, F. V. Coroniti, C. F. Kennel, F. L. Scarf, E. W. Greenstadt, W. S. Kurth, and R. P. Lepping, Geophys. Res. Lett. 12, 183 (1985).en_US
dc.identifier.citedreferenceD. A. Gurnett, W. S. Kurth, and F. L. Scarf, Science 212, 235 (1981).en_US
dc.identifier.citedreferenceE. S. Weibel, Phys. Fluids 13, 3003 (1970).en_US
dc.identifier.citedreferenceJ. M. Kindel and C. F. Kennel, J. Geophys. Res. 76, 3055 (1971).en_US
dc.identifier.citedreferenceT. Stix, Phys. Fluids 16, 1922 (1973).en_US
dc.identifier.citedreferenceH. L. Berk, W. Horton, Jr., M. N. Rosenbluth, and P. H. Rutherford, Nucl. Fusion 15, 819 (1975).en_US
dc.identifier.citedreferenceB. Coppi and K. Bhadra, Phys. Fluids 18, 692 (1975).en_US
dc.identifier.citedreferenceF. W. Perkins, Phys. Fluids 19, 1012 (1976).en_US
dc.identifier.citedreferenceM. Yamada, S. Seiler, H. W. Hendel, and H. Ikezi, Phys. Fluids 20, 450 (1977).en_US
dc.identifier.citedreferenceJ. M. Cornwall and M. Schulz, J. Geophys. Res. 76, 7791 (1971).en_US
dc.identifier.citedreferenceT. E. Stringer, Plasma Phys. 6, 267 (1964).en_US
dc.identifier.citedreferenceS. P. Gary, J. Geophys. Res. 83, 2504 (1978).en_US
dc.identifier.citedreferenceD. S. Lemons, L. R. Asbridge, S. J. Bame, W. C. Feldman, S. P. Gary, and J. T. Gosling, J. Geophys. Res. 84, 2135 (1979).en_US
dc.identifier.citedreferenceR. Bergmann, J. Geophys. Res. 89, 953 (1984).en_US
dc.identifier.citedreferenceC. L. Grabbe, Geophys. Res. Lett. 12, 483 (1985).en_US
dc.identifier.citedreferenceP. B. Dusenbery and L. R. Lyons, J. Geophys. Res. 86, 7627 (1981).en_US
dc.identifier.citedreferenceK. Akimoto and D. Winske, J. Geophys. Res. 90, 12095 (1985).en_US
dc.identifier.citedreferenceN. Omidi, J. Geophys. Res. 90, 12330 (1985).en_US
dc.identifier.citedreferenceK. Akimoto and N. Omidi, Geophys. Res. Lett. 13, 97 (1986).en_US
dc.identifier.citedreferenceW. E. Drummond and M. N. Rosenbluth, Phys. Fluids 7, 1507 (1962).en_US
dc.identifier.citedreferenceP. Michelsen, Phys. Fluids 19, 337 (1976).en_US
dc.identifier.citedreferenceJ. J. Rasmussen and R. W. Schrittwieser, IEEE Trans. 19, 457 (1991).en_US
dc.identifier.citedreferenceR. L. Kaufmann and P. M. Kintner, J. Geophys. Res. 87, 10487 (1982).en_US
dc.identifier.citedreferenceA. Miura, H. Okuda, and M. Ashour-Abdalla, Geophys. Res. Lett. 10, 353 (1983).en_US
dc.identifier.citedreferenceR. Bergmann, I. Roth, and M. K. Hudson, J. Geophys. Res. 93, 4005 (1988).en_US
dc.identifier.citedreferenceD. Schriver and M. Ashour-Abdalla, J. Geophys. Res. 93, 2633 (1988).en_US
dc.identifier.citedreferenceP. M. Kintner, M. C. Kelley, and F. S. Mozer, Geophys. Res. Lett. 5, 139 (1979).en_US
dc.identifier.citedreferenceM. Teraerin, F. S. Mozer, and M. Woldorff, Phys. Rev. Lett. 43, 1941 (1979).en_US
dc.identifier.citedreferenceM. Kintner, M. C. Kelley, R. D. Sharp, A. G. Ghielmetti, M. Temerin, C. Cattell, P. F. Mizera, and J. F. Fennel, J. Geophys. Res. 84, 7201 (1979).en_US
dc.identifier.citedreferenceC. Cattell, J. Geophys. Res. 86, 3641 (1981).en_US
dc.identifier.citedreferenceK. Okuda and M. Ashour-Abdalla, J. Geophys. Res. 88, 899 (1983).en_US
dc.identifier.citedreferenceM. Ashour-Abdalla, H. Okuda, and S. Y. Kim, Geophys. Res. Lett. 14, 375 (1987).en_US
dc.identifier.citedreferenceM. Chen and M. Ashour-Abdalla, J. Geophys. Res. 93, 18949 (1990).en_US
dc.identifier.citedreferenceP. J. Palmadesso, S. B. Ganguli, and H. G. Mitchell, Jr., “Modeling Magnetospheric Plasma,” edited by T. E. Moore and J. H. Waite, Jr., Geophysical Monograph 44, 133 (1988).en_US
dc.identifier.citedreferenceS. P. Gary, Phys. Fluids 23, 1193 (1980).en_US
dc.identifier.citedreferenceD. W. Forslund, Space Sci. Rev. 42, 3 (1985).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.