Show simple item record

The role of extra-atomic relaxation in determining Si 2pSi2p binding energy shifts at silicon/silicon oxide interfaces

dc.contributor.authorZhang, K. Z.en_US
dc.contributor.authorGreeley, J. N.en_US
dc.contributor.authorBanaszak Holl, Mark M.en_US
dc.contributor.authorMcFeely, F. R.en_US
dc.date.accessioned2010-05-06T20:42:41Z
dc.date.available2010-05-06T20:42:41Z
dc.date.issued1997-09-01en_US
dc.identifier.citationZhang, K. Z.; Greeley, J. N.; Banaszak Holl, Mark M.; McFeely, F. R. (1997). "The role of extra-atomic relaxation in determining Si 2pSi2p binding energy shifts at silicon/silicon oxide interfaces." Journal of Applied Physics 82(5): 2298-2307. <http://hdl.handle.net/2027.42/69509>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69509
dc.description.abstractThe observed binding energy shift for silicon oxide films grown on crystalline silicon varies as a function of film thickness. The physical basis of this shift has previously been ascribed to a variety of initial state effects (Si–O ring size, strain, stoichiometry, and crystallinity), final state effects (a variety of screening mechanisms), and extrinsic effects (charging). By constructing a structurally homogeneous silicon oxide film on silicon, initial state effects have been minimized and the magnitude of final state stabilization as a function of film thickness has been directly measured. In addition, questions regarding the charging of thin silicon oxide films on silicon have been addressed. From these studies, it is concluded that initial state effects play a negligible role in the thickness-dependent binding energy shift. For the first ∼ 30 Å∼30Å of oxide film, the thickness-dependent binding energy shift can be attributed to final state effects in the form of image charge induced stabilization. Beyond about 30 Å, charging of the film occurs. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent341419 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe role of extra-atomic relaxation in determining Si 2pSi2p binding energy shifts at silicon/silicon oxide interfacesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.contributor.affiliationotherIBM T. J. Watson Research Center, Post Office Box 218, Yorktown Heights, New York 10598en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69509/2/JAPIAU-82-5-2298-1.pdf
dc.identifier.doi10.1063/1.366037en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceFor lead references see: The Physics and Chemistry of SiO2SiO2 and the Si–SiO2Si–SiO2 Interface 2, edited by C. R. Helms and B. E. Deal (Plenum, New York, 1993); The Physics and Technology of Amorphous SiO2,SiO2, edited by R. A. B. Devine (Plenum, New York, 1988); SiO2SiO2 and Its Interfaces, edited by S. T. Pantelides and G. Lucovsky (Material Research Society, Pittsburgh, 1990); The Physics and Technology of Amorphous Silicon Dioxide, edited by C. R. Helms and B. E. Deal (Plenum, New York, 1989).en_US
dc.identifier.citedreferenceS. Iwata and A. Ishizaka, J. Appl. Phys. JAPIAU79, 6653 (1996).en_US
dc.identifier.citedreferenceT. Hattori, Crit. Rev. Solid State Mater Sci. CCRSDA20, 339 (1995).en_US
dc.identifier.citedreferenceF. R. McFeely, K. Z. Zhang, M. M. Banaszak Holl, S. Lee, and J. E. Bender, J. Vac. Sci. Technol. B JVTBD914, 2824 (1996).en_US
dc.identifier.citedreferenceWe note that some researchers have dissented, at least to some degree, with this viewpoint, particularly with regard to the spatial location of moieties giving rise to peak C. See an extensive review of Grunthaner’s and others work on the SiO2/SiSiO2/Si interface as well as a summary of the Si–O ring size discussion in Ref. 6.en_US
dc.identifier.citedreferenceF. J. Grunthaner and P. J. Grunthaner Mater. Sci. Rep. MSREEL1, 65 (1986).en_US
dc.identifier.citedreferenceG. Hollinger, Appl. Surf. Sci. ASUSEE8, 318 (1981).en_US
dc.identifier.citedreferenceInitial state effects refer to structural and compositional features of the material that influence the energy level of the core state prior to interaction with the exciting photon. In general, any change that effects the valence electron distribution will also cause the energy of the core electrons to vary.en_US
dc.identifier.citedreferenceFinal state effects refer to mechanisms that serve to stabilize (or destabilize) the positively charged core-hole state that is formed upon ejection of the photoelectron from the emitting atom.en_US
dc.identifier.citedreferenceExtrinsic effects are defined as those not related to the specific geometric or electronic structure of the material to be studied, but are instead related to details of the experimental conditions. For example, charging occurs when insulating samples are exposed to an x-ray source.en_US
dc.identifier.citedreferenceP. A. Agaskar, Inorg. Chem. INOCAJ30, 2707 (1991); P. A. Agaskar and W. G. Klemperer, Inorg. Chim. Acta ICHAA3229, 355 (1995); C. L. Frye and W. T. Collins, J. Am. Chem. Soc. JACSAT92, 5586 (1970); R. Müller, R. Kohne, and S. Sliwinski, J. Prakt. Chem. 9, 71 (1959).en_US
dc.identifier.citedreferenceM. M. Banaszak Holl and F. R. McFeely, Phys. Rev. Lett. PRLTAO72, 2441 (1993); S. Lee, S. Makan, M. M. Banaszak Holl, and F. R. McFeely, J. Am. Chem. Soc. JACSAT116, 11 819 (1994); K. Z. Zang, L. M. Meeuwenberg, M. M. Banaszak Holl, and F. R. McFeely, Jpn. J. Appl. Phys. JJAPA536, 1622 (1997).en_US
dc.identifier.citedreferenceS. Lee, M. M. Banaszak Holl, W. H. Hung, and F. R. McFeely, Appl. Phys. Lett. APPLAB68, 1081 (1996).en_US
dc.identifier.citedreferenceF. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, Phys. Rev. B PRBMDO38, 6084 (1988).en_US
dc.identifier.citedreferenceThese spectra have not been subjected to any background subtraction and the Si 2p1/2Si2p1/2 component of the Si 2pSi2p core level has not been removed.en_US
dc.identifier.citedreferenceThe use of this ratio avoids the introduction of error caused by slight differences in sample alignment which can lead to a variation in absolute intensity from spectrum to spectrum.en_US
dc.identifier.citedreferenceThe reported value is the average of four runs. The standard deviation is given in parentheses.en_US
dc.identifier.citedreferenceEquation (5) explicitly assumes that significant islanding does not occur. We explored the effect of such islanding by adding the possibility of a third incomplete layer to the calculation. This resulted in a maximum 10% error in the calculated ratio.en_US
dc.identifier.citedreferenceT. P. E. Auf der Hyde, H.-B. Bürgi, H. Bürgi, and K. W. Törnroos, Chimia CHIMAD45, 138 (1991).en_US
dc.identifier.citedreferenceRun 3 corresponds to the data in Fig. 7 and run 2 corresponds to the 170 eV data in Fig. 5.en_US
dc.identifier.citedreferenceSee Fig. 6, page 6659 of Ref. 2.en_US
dc.identifier.citedreferenceS. Iwata and A. Ishizaka, J. Jpn. Inst. Metals 43, 380 (1979); S. Iwata and A. Ishizaka, J. Jpn. Inst. Metals 43, 388 (1979); A. Ishizaka, S. Iwata, and Y. Kamigaki, Surf. Sci. SUSCAS84, 355 (1979); A. Ishizaka and S. Iwata, Appl. Phys. Lett. APPLAB36, 71 (1980).en_US
dc.identifier.citedreferenceSee Sec. III, 2, c, page 6673 of Ref. 2.en_US
dc.identifier.citedreferenceThe FWHM of the spectral features in panel C do increase as a function of photon energy, but this is wholly a consequence of the monochromator/analyzer resolution function.en_US
dc.identifier.citedreferenceThe broadening of photoemission features as a sample charges is attributed to the inhomogeneous nature of the resulting charge distribution. Practical Surface Analysis, 2nd ed., edited by D. Briggs and M. P. Seah (Wiley, New York, 1990).en_US
dc.identifier.citedreferenceN. M. Johnson, D. K. Biegelson, M. D. Moyer, and S. T. Chang, Appl. Phys. Lett. APPLAB43, 563 (1983); Also see Himpsel et al. in Ref. 14.en_US
dc.identifier.citedreferenceF. J. Himpsel, F. R. McFeely, J. F. Morar, A. Taleb-Ibrahimi, and J. A. Yarmoff, in Proceedings of the 1988 Enrico Fermi School on Photoemission and Absorption Spectroscopy of Solids and Interfaces with Synchrotron Radiation (North Holland, Varenna, 1988).en_US
dc.identifier.citedreferenceY. Tao, Z. H. Lu, M. J. Graham, and S. P. Tay, J. Vac. Sci. Technol. B JVTBD912, 2500 (1994).en_US
dc.identifier.citedreferenceJ. Finster, D. Schulze, F. Bechstedt, and A. Meisel, Surf. Sci. SUSCAS152/153, 1063 (1985).en_US
dc.identifier.citedreferenceA. Iqbal, C. W. Bates, and J. W. Allen, Appl. Phys. Lett. APPLAB47, 1064 (1985).en_US
dc.identifier.citedreferenceA. Pasquarello, M. S. Hybertson, and R. Car, Phys. Rev. Lett. PRLTAO74, 1024 (1995).en_US
dc.identifier.citedreferenceA. Pasquarello, M. S. Hybertson, and R. Car, Phys. Rev. B PRBMDO53, 10 942 (1996).en_US
dc.identifier.citedreferenceR. Browning, M. A. Sobolewski, and C. R. Helms, Phys. Rev. B PRBMDO38, 13 407 (1988).en_US
dc.identifier.citedreferenceM. M. Banaszak Holl, S. Lee, and F. R. McFeely, Appl. Phys. Lett. APPLAB65, 1097 (1994).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.