Show simple item record

Defect generation by preferred nucleation in epitaxial Sr2RuO4/LaAlO3Sr2RuO4/LaAlO3

dc.contributor.authorZurbuchen, Mark A.en_US
dc.contributor.authorJia, Yunfaen_US
dc.contributor.authorKnapp, Stacyen_US
dc.contributor.authorCarim, Altaf H.en_US
dc.contributor.authorSchlom, Darrell G.en_US
dc.contributor.authorPan, Xiaoqingen_US
dc.date.accessioned2010-05-06T20:44:11Z
dc.date.available2010-05-06T20:44:11Z
dc.date.issued2003-11-10en_US
dc.identifier.citationZurbuchen, Mark A.; Jia, Yunfa; Knapp, Stacy; Carim, Altaf H.; Schlom, Darrell G.; Pan, X. Q. (2003). "Defect generation by preferred nucleation in epitaxial Sr2RuO4/LaAlO3Sr2RuO4/LaAlO3." Applied Physics Letters 83(19): 3891-3893. <http://hdl.handle.net/2027.42/69525>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/69525
dc.description.abstractThe atomic structure of the film–substrate interface of a (001) Sr2RuO4/(100)c LaAlO3Sr2RuO4/(100)cLaAlO3 film, determined by high-resolution transmission electron microscopy and simulation, is reported. The structure of superconductivity-quenching Δc ≈ 0.25 nmΔc≈0.25nm out-of-phase boundaries (OPBs) in the film is also reported. Growth in one region on the La-terminated surface is observed to nucleate with a SrO layer. Because two structurally equivalent SrO layers exist within the unit cell, two neighboring nuclei with differing growth order (SrO-RuO2-SrO(SrO-RuO2-SrO or RuO2-SrO-SrO)RuO2-SrO-SrO) will nucleate an OPB where their misaligned growth fronts meet. Strategies to avoid OPB generation by this mechanism are suggested, which it is hoped may ultimately lead to superconducting Sr2RuO4Sr2RuO4 films. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent344244 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleDefect generation by preferred nucleation in epitaxial Sr2RuO4/LaAlO3Sr2RuO4/LaAlO3en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16803-6602en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/69525/2/APPLAB-83-19-3891-1.pdf
dc.identifier.doi10.1063/1.1624631en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceY. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. J. Bednorz, and F. Lichtenberg, Nature (London) NATUAS372, 532 (1994).en_US
dc.identifier.citedreferenceT. M. Rice and M. Sigrist, J. Phys. C JCOMEL7, L643 (1995).en_US
dc.identifier.citedreferenceY. Maeno, T. M. Rice, and M. Sigrist, Phys. Today PHTOAD54, 42 (2001).en_US
dc.identifier.citedreferenceD. G. Schlom, Y. Jia, L.-N. Zou, J. H. Haeni, S. Briczinski, M. A. Zurbuchen, C. W. Leitz, S. Madhavan, S. Wozniak, Y. Liu, M. E. Hawley, G. W. Brown, A. Dabkowski, H. A. Dabkowska, R. Uecker, and P. Reiche, Proc. SPIE PSISDG3481, 226 (1998).en_US
dc.identifier.citedreferenceS. Ohashi, M. Lippmaa, N. Nakagawa, H. Nagasawa, H. Koinuma, and M. Kawasaki, Rev. Sci. Instrum. RSINAK70, 178 (1999).en_US
dc.identifier.citedreferenceF. Lichtenberg, A. Catana, J. Mannhart, and D. G. Schlom, Appl. Phys. Lett. APPLAB60, 1138 (1992).en_US
dc.identifier.citedreferenceA. P. Mackenzie, R. K. W. Haselwimmer, A. W. Tyler, G. G. Lonzarich, Y. Mori, S. Nishizaki, and Y. Maeno, Phys. Rev. Lett. PRLTAO80, 161 (1998).en_US
dc.identifier.citedreferenceM. A. Zurbuchen, Y. Jia, S. K. Knapp, A. H. Carim, D. G. Schlom, L.-N. Zou, and Y. Liu, Appl. Phys. Lett. APPLAB78, 2351 (2001).en_US
dc.identifier.citedreferenceT. Akima, S. Nishizaki, and Y. Maeno, J. Phys. Soc. Jpn. JUPSAU68, 694 (1999).en_US
dc.identifier.citedreferenceZ. Q. Mao, Y. Mori, and Y. Maeno, Phys. Rev. B PRBMDO60, 610 (1999).en_US
dc.identifier.citedreferenceJ. G. Wen, C. Traeholt, and H. W. Zandbergen, Physica C PHYCE6205, 354 (1993).en_US
dc.identifier.citedreferenceG. Kong, M. O. Jones, J. S. Abell, P. P. Edwards, S. T. Lees, K. E. Gibbons, I. Gameson, and M. Aindow, J. Mater. Res. JMREEE16, 3309 (2001).en_US
dc.identifier.citedreferenceM. A. Zurbuchen, J. Lettieri, Y. Jia, D. G. Schlom, S. K. Streiffer, and M. E. Hawley, J. Mater. Res. JMREEE16, 489 (2001).en_US
dc.identifier.citedreferenceM. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Science SCIEAS266, 1540 (1994).en_US
dc.identifier.citedreferenceT. Ohnishi, K. Takahashi, M. Nakamura, M. Kawasaki, M. Yoshimoto, and H. Koinuma, Appl. Phys. Lett. APPLAB74, 2531 (1999).en_US
dc.identifier.citedreferenceCubic indices; LaAlO3LaAlO3 is cubic at the film growth temperature, and transforms to rhombohedral on cooling.en_US
dc.identifier.citedreferenceJ.-P. Jacobs, M. A. San Miguel, and L. J. Alvarez, J. Mol. Struct.: THEOCHEM THEODJ390, 193 (1997).en_US
dc.identifier.citedreferenceD.-W. Kim, D.-H. Kim, B.-S. Kang, T. W. Noh, D. R. Lee, and K.-B. Lee, Appl. Phys. Lett. APPLAB74, 2176 (1999).en_US
dc.identifier.citedreferenceP. A. W. van der Heide and J. W. Rabalais, Chem. Phys. Lett. CHPLBC297, 350 (1998).en_US
dc.identifier.citedreferenceS. Bals, G. Rijnders, D. H. A. Blank, and G. Van Tendeloo, Physica C PHYCE6355, 225 (2001).en_US
dc.identifier.citedreferenceJ. C. Jiang and X. Q. Pan, J. Appl. Phys. JAPIAU89, 6365 (2001).en_US
dc.identifier.citedreferenceM. Salluzzo, C. Aruta, I. Maggio-Aprile, Ø. Fischer, S. Gals, and J. Zegenhagen, Phys. Status Solidi A PSSABA186, 339 (2001).en_US
dc.identifier.citedreferenceM. A. Zurbuchen, J. Lettieri, G. Asayama, Y. Jia, A. H. Carim, D. G. Schlom, and S. K. Streiffer (unpublished).en_US
dc.identifier.citedreferenceB. Aurivillius, Ark. Kemi ARKEAD1, 463 (1950); 1, 499 (1950); 2, 519 (1951); 5, 39 (1953).en_US
dc.identifier.citedreferenceS. N. Ruddlesden and P. Popper, Acta Crystallogr. ACCRA910, 538 (1957); 11, 54 (1958).en_US
dc.identifier.citedreferenceC. N. R. Rao and B. Raveau, Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides, 2nd ed. (Wiley, New York, 1998), p. 61.en_US
dc.identifier.citedreferenceD. G. Schlom, J. H. Haeni, J. Lettieri, C. D. Theis, W. Tian, J. C. Jiang, and X. Q. Pan, Mater. Sci. Eng., B MSBTEK87, 282 (2001).en_US
dc.identifier.citedreferenceB. Dam and B. Stäuble-Pümpin, J. Mater. Sci.: Mater. Electron. JSMEEV9, 217 (1998).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.